This exam has two parts. The first part is the final exam for Math 442. The second part is the qualifying exam supplement. The Math 441-442 Qualifying Exam comprises both parts. Each problem or problem part is worth 5 points.

Final Exam, Math 442, Spring 2004

1. Let M^n be a connected smooth manifold.

 (a) What is a Riemannian metric on M?

 (b) How is the length of a piecewise smooth curve defined on a Rie-
 mannian manifold?

 (c) How is the distance between points defined on a Riemannian man-
 ifold?

 (d) For the Riemannian metric

 $g = \frac{4}{(1 + |x|^2)^2} \sum_{1}^{n} dx^i dx^i$

 on \mathbb{R}^n, find the length of the curve

 $\sigma : [0, 1] \rightarrow \mathbb{R}^n, \sigma(t) = (t, 0, \ldots, 0)$

2. Let M^n be a smooth manifold with a linear connection ∇.

 (a) How does ∇ induce the covariant derivative $\frac{\nabla Y}{\partial t}$ of a vector field
 Y along a smooth curve σ in M?

 (b) What is the torsion of a linear connection?

 (c) What is the curvature form of a linear connection?

 (d) Define parallel translation along a smooth curve in M.

 (e) On a Riemannian manifold M, g, what linear connection is used
 and what characterizes it?

3. Consider the unit sphere $S^n \subset \mathbb{R}^{n+1}$, for $n > 1$, with its canonical
 Riemannian metric g induced from the dot product of \mathbb{R}^{n+1}. Let $p =
 (0, \ldots, 0, 1) \in S^n$ and let $v = \epsilon_1 + \epsilon_2 \in T_p S^n$, where
 $\epsilon_1, \ldots, \epsilon_{n+1}$ is the standard basis of \mathbb{R}^{n+1}. Find $\exp_p v =
 (a_1, \ldots, a_{n+1})$, that is, find the numbers a_1, \ldots, a_{n+1}.
4. Let \(H^n = \{(x^1, \ldots, x^n) \in \mathbb{R}^n : x^n > 0\} \) be the upper half space with the Riemannian metric
\[
g = \frac{1}{(x^n)^2} \sum_{i=1}^{n} dx^i dx^i
\]
(a) Explain why \(\theta^i = \frac{1}{x^n} dx^i, i = 1, \ldots, n \) is an orthonormal coframe field on \(H \) and find its dual orthonormal moving frame \(e_i, i = 1, \ldots, n \), expressed in terms of the standard basis \(\epsilon_1, \ldots, \epsilon_n \) of \(\mathbb{R}^n \).
(b) Find the connection forms of the Levi-Civita connection, with respect to this moving frame.
(c) Let \(p = (0, \ldots, 0, 1) \in H \) and let \(\gamma : [0, \infty) \to H^n \) be a curve \(\gamma(t) = (0, \ldots, 0, f(t)) \), for some smooth function on \([0, \infty)\). Find the function \(f(t) \) for which \(\gamma(t) \) is the geodesic satisfying \(\gamma(0) = p \) and \(\dot{\gamma}(0) = \epsilon_n \).
(d) Find the Jacobi field \(Y(t) \) along the geodesic \(\gamma \) of part (c) for which \(Y(0) = 0 \) and \(Y'(0) = \epsilon_1 \).

5. Let \(\gamma : [0, a] \to M^n \) be a unit speed geodesic in a Riemannian manifold \(M, g \). If \(V \) is a smooth vector field along \(\gamma \), then the index form is
\[
I(V, V) = g(V', V)|^a_0 - \int_0^a g(V'' + R(V; \dot{\gamma}) \dot{\gamma}, V) dt
\]
From this prove that if \(V(t) \) is perpendicular to \(\dot{\gamma}(t) \) for every \(t \), then
\[
I(V, V) = \int_0^a (|V'|^2 - K(V \wedge \dot{\gamma})|V|^2) dt
\]
where \(K(V \wedge \dot{\gamma}) \) is the sectional curvature of the section spanned by \(V(t) \) and \(\dot{\gamma}(t) \) (and is zero whenever \(V(t) = 0 \)).

6. Let \(M^n, g \) be a complete Riemannian manifold. Let \(p \in M \) and let \(\exp_p : T_p M \to M \) be the exponential map at the point \(p \). Prove that if the sectional curvatures are all less than or equal to zero, then \(\exp_p \) has no singularities.

7. Suppose that \(g \) is a left-invariant Riemannian metric on the Lie group \(SL(n, \mathbb{R}) \) for which the Ricci curvature satisfies \(S = \lambda g \), for some constant \(\lambda \); that is, \(g \) is an Einstein metric. Explain why it must be the case that \(\lambda \leq 0 \).
Math 441-442 Qualifying Exam Supplement
Spring 2004

8. Prove that a flat Riemannian manifold M^n, g is locally isometric to Euclidean space. Hint: for $p \in M$, prove that there exists a local coordinate system x^1, \ldots, x^n on an open set $U \subset M$ about p such that $g = \sum_1^n dx^i dx^i$ on U.

9. Let $\alpha = dx \wedge dy \wedge dz$ be the volume form on Euclidean space \mathbb{R}^3. Let $S^2(r)$ be the sphere of radius $r > 0$ centered at the origin. Let N be the unit normal vector field on S^2 whose value at $p \in S^2$ is $N(p) = \frac{1}{r}p$. Then the area form of S^2 for its induced Riemannian metric is given by the interior product

$$\omega = \iota_N dx \wedge dy \wedge dz$$

pulled back to S^2. Explain how Stokes’s Theorem relates the volume $V(B(r)) = \int_{B(r)} \alpha$ of the ball $B(r)$ of radius r in \mathbb{R}^3 to the area $A(S^2(r)) = \int_{S^2(r)} \omega$ of the sphere $S^2(r)$.

10. Explain how the Gauss-Bonnet Theorem implies that for any Riemannian metric on a smooth surface M homeomorphic to the torus T^2, the Gaussian curvature must be zero at some point of M.