Math 442 Final Examination Geometry Qualifying Examination May 5, 1993

Instructions The Geometry Qualifying Examination comprises two parts. You must work 8 problems in Part I and 4 problems in Part II. Budget your time accordingly. Part I constitutes the Math 442 Final Examination. Each problem is worth 10 points.

Part I Do all 8 problems in this part.

- 1. Let G, H be Lie groups with Lie algebras \mathcal{G}, \mathcal{H} . Let $f, g : G \to H$ be Lie group homomorphisms, and suppose that G is connected. Prove that if $f_* = g_* : \mathcal{G} \to \mathcal{H}$, then f = g.
- 2. On \mathbf{R}^3 let \mathcal{D} be the 2-plane distribution defined by $\mathcal{D}^{\perp} = \{\theta\}$, where $\theta = dx + z(dy dz)$. Determine whether or not \mathcal{D} is completely integrable.
- 3. Let $G = SL(n+1; \mathbf{R})$ and let

$$H = \left\{ \begin{pmatrix} t & {}^{t}x \\ 0 & B \end{pmatrix} \in G : t \in \mathbf{R}, B \in GL(n; \mathbf{R}), x \in \mathbf{R}^{n} \right\}.$$

Prove that G/H is diffeomorphic to the real projective space $\mathbb{R}P^n$.

4. Prove that the DeRham cohomology space $H^1(S^2) = 0$.

summation convention and the index range $1 \le i, j, k \le 2$

5. Fix a point p_0 in the smooth Riemannian surface M,g. Let θ^1,θ^2 be a smooth orthonormal coframe field on M, with respect to which the Levi-Civita connection form is $\omega = \begin{pmatrix} 0 & \omega_2^1 \\ \omega_1^2 & 0 \end{pmatrix}$. Let the Gaussian curvature be K; that is, the curvature form is given by $\Omega_2^1 = K\theta^1 \wedge \theta^2$. Suppose that there exist smooth 1-forms $\omega_1^3 = -\omega_3^1$ and $\omega_2^3 = -\omega_3^2$ on M satisfying (we use the

$$\omega_i^3 \wedge \theta^i = 0$$

$$d\omega_i^3 = -\omega_j^3 \wedge \omega_i^j$$

$$\omega_1^3 \wedge \omega_2^3 = K\theta^1 \wedge \theta^2$$

Prove that there exists a neighborhood U of p_0 in M on which there exists a smooth map $F: U \to \mathbb{R}^3$ such that $\langle dF, dF \rangle = g$.

6. Let T^2 be the torus in ${\bf R}^3$ obtained by revolving the circle $(x-2)^2+z^2=1$ about the z-axis. If θ is the usual polar angle in the xy-plane and φ is the

angle from the z-axis, then $T^2 = \{2(\cos\theta, \sin\theta, 0) + \cos\varphi(\cos\theta, \sin\theta, 0) + \sin\varphi(0, 0, 1) : 0 \le \theta \le 2\pi, 0 \le \varphi \le \pi\}$. Let D be the regular domain of integration $D = T^2 \cap \{y \ge 0\}$. Let T^2 be oriented by its outward pointing smooth unit normal vector field e_3 .

- i) On a sketch, indicate the induced orientation on ∂D .
- ii) Use Stokes' Theorem to calculate $\int_D dx \wedge dz$.
- 7. Consider the upper-half plane $H^2 = \{(x,y) \in \mathbf{R}^2 : y > 0\}$, with the Riemannian metric $g = \frac{1}{y^2}(dx^2 + dy^2)$. Let $\theta^1 = \frac{1}{y}dx$, $\theta^2 = \frac{1}{y}dy$, an orthonormal coframe field on H^2 .
- i) Find the Levi-Civita connection forms ω^i_j with respect to this coframe field.
 - ii) Find the curvature forms Ω_i^i .
- 8. Let ∇ denote the linear connection on the unit sphere S^2 induced from the canonical connection on \mathbf{R}^3 by orthogonal projection. Consider the smooth curve $\gamma(t) = \frac{1}{\sqrt{2}}(\cos t, \sin t, 1)$ in S^2 . Verify whether or not γ is a geodesic with respect to this connection.
- **Part II** The following eight problems are grouped in pairs numbered $1, 1', \ldots, 4, 4'$. Do exactly one problem from each such pair, for a total of four problems.
- 1. Let M be a smooth manifold with smooth vector fields X and Y. Let $\theta: \mathbf{R} \times M \to M$ be the flow of X. Prove that if [X,Y] = 0 on M, then Y is θ_t -invariant for every $t \in \mathbf{R}$.
- 1'. Consider the smooth vector field X on S^2 given by X(x, y, z) = (y, -x, 0). Let $\theta: W \subset \mathbf{R} \times S^2 \to S^2$ be its flow.
 - i) Find W.
 - ii) Find $\theta(t, (0, 0, 1))$ for any $t \in \mathbf{R}$ at which it is defined.
- iii) Let $U = S^2 \cap \{z > 0\}$ and let $u : U \to \mathbf{R}^2$ be given by u(x, y, z) = (x, y), so that (U, u) is a chart on S^2 . On U we have $X = f \frac{\partial}{\partial u^1} + g \frac{\partial}{\partial u^2}$, for some smooth functions f, g on U. Find f.
- 2. Let $\Gamma = \{\pm id\}$ act on S^n , where -id is the antipodal map. Prove the Γ acts freely and properly discontinuously.
- 2'. Let $\pi: S^2 \to \mathbf{R}P^2$ be the projection map $\pi(x) = [x]$.
- i) Prove that if a vector field X on S^2 is invariant under the antipodal map $A: S^2 \to S^2$, where Ax = -x, then X is π -related to a vector field Y on $\mathbf{R}P^2$.

- ii) Is the vector field $X_{(x^1,x^2,x^3)}=(-x^2,x^1,x^3)$ on S^2 π -related to a vector field on $\mathbb{R}P^2$? Justify your answer.
- 3. i) State Sard's Theorem.
- ii) Let TM be the tangent bundle of the smooth m-dimensional submanifold M of \mathbf{R}^n . Let $F: \mathbf{R} \times TM \to \mathbf{R}^n$ be the map F(t, p, v) = p + tv. Prove that if n > 2m + 1, then there exists a point $q \in \mathbb{R}^n$ such that, for each $p \in M$, the line qp from q to p is not tangent to M at p.
- 3'. Prove that the map $F: \mathbf{R}P^1 \times \mathbf{R}P^1 \to \mathbf{R}P^3$ given by F([x,y],[z,w]) = [xz, xw, yz, yw] is a smooth immersion.
- 4. Let M be a compact oriented smooth surface embedded in \mathbf{R}^3 . Let e_3 be a smooth unit normal vector field on M, so that $e_3: M \to S^2$ is the Gauss map. Prove that $\deg e_3 = \frac{1}{2}\chi(M)$, where $\chi(M)$ is the Euler characteristic of M.
- 4'. Exhibit a triangulation of the Klein bottle and calculate its Euler characteristic.