
Homework 4: Due 02/19/2018

1. (5 points) Consider the Bernoulli example we used to motivate the invariant estimation.

Let X1, · · · , Xn
iid∼ Ber(p), p ∈ (0, 1). Often only the total count is recorded, Y =∑n

i=1Xi ∼ Bin(n, p), p ∈ (0, 1). Let P = {Bin(n, p) : p ∈ (0, 1)}, and g(x) = n − x.
Please clearly define the following:

(a) the sample space, X (for Y )

(b) parameter space, Θ

(c) the group of transformations on the sample space, G

(d) the induced group of transformations on the parameter space, Ḡ

(e) the orbits of Ḡ. (Is the group transitive?)

2. (15 points) Although invariance seems a very natural, maybe the most convincing,
principle in estimation problem, it may run into difficulties. For example, an estimation
problem might be invariant under two different groups, and each group leads to a
different MRIE.
Let (X1, X2) ∼ N2(0,Σ) and (Y1, Y2) ∼ N2(0, θΣ), θ > 0. Suppose (X1, X2) and (Y1, Y2)
are independent. Consider the problem of estimating θ.

(a) Let g1(x1, x2, y1, y2) = (x∗1, x
∗
x, y
∗
1, y
∗
2), where

x∗1 = c1x1 + c2x2 y∗1 = d(c1y1 + c2y2)

x∗2 = bx2 y∗2 = dby2

Denote G1 = {g1 : c1, c2, b, d > 0}. (A subgroup of scale transformations in R2. )
Show that the model is invariant under G1 (the distribution family is invariant).

(b) Show that the loss function is invariant under G1 iff L(θ, a) = L(a
θ
).

(c) Show that an estimator δ is invariant under G1 iff δ(x1, x2, y1, y2) = k
y22
x22
, for some

value of k (a.e.).

(d) Show that an estimator δ∗ is an MRIE underG1, iff, δ∗ = k∗
y22
x22

, where k∗ minimizes

Eθ

[
L(k

Y 2
2

θX2
2

)

]
= E1

[
L(k

Y 2
2

X2
2

)

]
(e) Now consider G2 by switching x∗1 and x∗2 and switching y∗1 and y∗2. What is an

MRIE under G2? Please comment on how it compares with an MRIE under G1.

3. (5 points) Recall that we have defined risk-unbiasness in location invariant problem.
An estimator δ is called risk-unbiased if

Eθ [L(θ, δ(X))] ≤ Eθ [L(θ∗, δ(X))] , ∀θ∗ ∈ Θ.
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In another word, on the average, δ is at least as close to the true value (θ or a function
of it) as it is to any false value (θ∗ or a function of it). Furthermore, a group, G is called
commutative iff g1g2 = g2g1, ∀g1, g2 ∈ G. Please prove that an MRIE is risk-unbiased
if Ḡ is transitive and G̃ is commutative.

4. (15 points) Consider the location scale family generated by a known density f01 on Rp.

P = {f(x|µ, σ) : f(x|µ, σ) =
1

σp
f01(

x− µ1
σ

), µ ∈ R, σ ∈ R+}.

Consider the transformations G = {g : g(x) = cx + b, c > 0, b ∈ R}. The model is
invariant under G.

(a) Show that the right-invariant measure on

Ḡ = {ḡ : ḡ(µ, σ) = (cµ+ b, cσ)c > 0, b ∈ R}

satisifies

µr(A×B) =

∫
A

∫
B

1

c
db dc,

so that µr has density 1/c with respect to Lebesgue measure on R×R+.Furthermore,
the induced right-invariant prior on Θ = {(µ, σ)} ∈ R× R+, πr is same as µr.

(b) Let X1, X2, · · · , Xn
iid∼ N(µ, σ2), µ ∈ R, σ2 ∈ R+.

(That is, f01 is the density of standard normal distribution, and p = n.)
Derive the posterior distribution of (µ, σ2) under πr. Describe the distribution
name and the parameter of µ|x̄, σ2 and 1/σ2|x̄.
Remark: the marginal posterior of µ|x̄ can be obtained by integrating the joint
pdf over σ2, which is

µ− x̄
s/
√
n

∣∣∣(X1, · · · , Xn) =
µ− x̄
s/
√
n

∣∣∣(x̄, s) ∼ tn−1

(c) Derive the MRIE for σ2 under loss function

L((µ, σ2), a) = (σ2 − a)2/σ4.

Compare it with the result in Example 4.14 on Page 257 of Shao 2003.

(d) Note that in the previous part, the loss function assigns much heavier penalities
to overestimation than to underestimation since

lim
a→∞

L((µ, σ2), a) =∞, lim
a→0

L((µ, σ2), a) = 1.

Alternatively, Stein’s loss,

L((µ, σ2), a) = (a/σ2)− log(a/σ2)− 1,

is more evenhanded. Derive the MRIE under Stein’s loss and compare it with the
previous MRIE.
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