Homework 5

Problem 1

(\#2.64)(i)
Note that

$$
\begin{aligned}
R_{T_{0}}(\theta) & =E\left(T_{0}-\theta\right)^{2} \\
& =\theta^{2} P(\bar{X}<0.5)+(1-\theta)^{2} P(\bar{X}>0.5)+(0.5-\theta)^{2} P(\bar{X}=0.5) .
\end{aligned}
$$

When $n=2 k$,

$$
\begin{aligned}
P(\bar{X}<0.5) & =\sum_{j=0}^{k-1}\binom{2 k}{j} \theta^{j}(1-\theta)^{2 k-j}, \\
P(\bar{X}>0.5) & =\sum_{j=k+1}^{2 k}\binom{2 k}{j} \theta^{j}(1-\theta)^{2 k-j}
\end{aligned}
$$

and

$$
P(\bar{X}=0.5)=\binom{2 k}{k} \theta^{k}(1-\theta)^{k}
$$

When $n=2 k+1$,

$$
\begin{gathered}
P(\bar{X}<0.5)=\sum_{j=0}^{k}\binom{2 k+1}{j} \theta^{j}(1-\theta)^{2 k+1-j}, \\
P(\bar{X}>0.5)=\sum_{j=k+1}^{2 k+1}\binom{2 k+1}{j} \theta^{j}(1-\theta)^{2 k+1-j},
\end{gathered}
$$

and $P(\bar{X}=0.5)=0$.
(ii)

A direct calculation shows that

$$
\begin{aligned}
R_{T_{1}}(\theta) & =E\left(T_{1}-\theta\right)^{2} \\
& =\frac{1}{2} E(\bar{X}-\theta)^{2}+\frac{1}{2} E\left(T_{0}-\theta\right)^{2} \\
& =\frac{\theta(1-\theta)}{2 n}+\frac{1}{2} R_{T_{0}}(\theta),
\end{aligned}
$$

where $R_{T_{0}}(\theta)$ is given in part (i), and

$$
\begin{aligned}
R_{T_{2}}(\theta) & =E\left(T_{2}-\theta\right)^{2} \\
& =E\left[\bar{X}(\bar{X}-\theta)^{2}+\left(\frac{1}{2}-\theta\right)^{2}(1-\bar{X})\right] \\
& =E(\bar{X}-\theta)^{3}+\theta E(\bar{X}-\theta)^{2}+\left(\frac{1}{2}-\theta\right)^{2}(1-\theta) \\
& =\frac{1}{n^{3}} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} E\left(X_{i}-\theta\right)\left(X_{j}-\theta\right)\left(X_{k}-\theta\right)+\frac{\theta^{2}(1-\theta)}{n}+\left(\frac{1}{2}-\theta\right)^{2}(1-\theta) \\
& =\frac{E\left(X_{1}-\theta\right)^{3}}{n^{2}}+\frac{\theta^{2}(1-\theta)}{n}+\left(\frac{1}{2}-\theta\right)^{2}(1-\theta) \\
& =\frac{\theta(1-\theta)^{3}-\theta^{3}(1-\theta)}{n^{2}}+\frac{\theta^{2}(1-\theta)}{n}+\left(\frac{1}{2}-\theta\right)^{2}(1-\theta),
\end{aligned}
$$

where the forth equality follows from $E(\bar{X}-\theta)^{2}=\operatorname{Var}(\bar{X})=\theta(1-\theta) / n$ and the fifth equality follows from the fact that $E\left(X_{i}-\theta\right)\left(X_{j}-\theta\right)\left(X_{k}-\theta\right) \neq 0$ iff $i=j=k$.
(\#2.69)
Here $T=1 / 2$ means the decision rule is random with probability 0.5 to be 0 or 1 .

$$
\begin{aligned}
R(\theta, T) & =E(L(\theta, T)) \\
& =L(\theta, 0) P(n \bar{X}<0.5 n)+L(\theta, 1) P(n \bar{X}>0.5 n)+\frac{1}{2}[L(\theta, 0)+L(\theta, 1)] P(n \bar{X}=0.5 n) .
\end{aligned}
$$

If H_{0} is true, i.e. $\theta \leq 0.5$, then $L(\theta, 0)=0$ and $L(\theta, 1)=C_{1}$. So

$$
R(\theta, T)=C_{1}[P(n \bar{X}>0.5 n)+0.5 P(n \bar{X}=0.5 n)]
$$

If H_{1} is true, i.e. $\theta>0.5$, then $L(\theta, 0)=C_{0}$ and $L(\theta, 1)=0$. So

$$
R(\theta, T)=C_{0}[P(n \bar{X}<0.5 n)+0.5 P(n \bar{X}=0.5 n)] .
$$

Using the fact that $n \bar{X} \sim \operatorname{Bin}(n, \theta)$, we have

$$
R(\theta, T)= \begin{cases}C_{1}\left[\sum_{j=0.5 n+1}^{n}\left(\begin{array}{l}
n \\
j \\
j
\end{array}\right) \theta^{j}(1-\theta)^{n-j}+0.5\binom{n}{0.5 n} \theta^{0.5 n}(1-\theta)^{0.5 n}\right], & \theta \leq 0.5 \\
C_{0}\left[\sum_{j=1}^{0.5 n}\binom{n}{j} \theta^{j}(1-\theta)^{n-j}+0.5\binom{n}{0.5 n} \theta^{0.5 n}(1-\theta)^{0.5 n}\right], & \theta>0.5\end{cases}
$$

Problem 2(\#2.73)

i
Note that

$$
\begin{aligned}
R_{a \bar{X}+b} & =E(a \bar{X}+b-\mu)^{2} \\
& =a^{2} \operatorname{Var}(\bar{X})+(a \mu+b-\mu)^{2} \\
& \geq a^{2} \operatorname{Var}(\bar{X}) \\
& =a^{2} R_{\bar{X}}(P) \\
& >R_{\bar{X}}(P)
\end{aligned}
$$

when $a>1$. Hence \bar{X} is better than $a \bar{X}+b$ with $a>1$.

ii

For $b \neq 0$,

$$
R_{\bar{X}+b}(P)=E(\bar{X}+b-\mu)^{2}=\operatorname{Var}(\bar{X})+b^{2}>\operatorname{Var}(\bar{X})=R_{\bar{X}}(P)
$$

Hence \bar{X} is better than $\bar{X}+b$ with $b \neq 0$.

Problem 3 (\#2.81)

a

$X_{i j} \stackrel{i i d}{\sim} N\left(\mu, \sigma_{a}^{2}+\sigma_{e}^{2}\right)$.
Since the sample mean and sample variance are independent,

$$
\bar{X}_{i} \perp \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2} .
$$

Due to between-group independence,

$$
\sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2} \perp \bar{X}_{i^{\prime}}, i^{\prime} \neq i .
$$

Then $\sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2} \perp\left(\bar{X}_{i}-\bar{X}\right)^{2}$. So MSA \perp MSE.

b

$\bar{X}_{i} \sim N\left(\mu, \sigma_{a}^{2}+\frac{\sigma_{e}^{2}}{n}\right)$, thus

$$
\Sigma_{i}\left(\bar{X}_{i}-\bar{X}\right)^{2} \sim\left(\sigma_{a}^{2}+\frac{\sigma_{e}^{2}}{n}\right) \mathcal{X}_{m-1}^{2}
$$

On the other hand, $X_{i j}-\bar{X}_{i}=\varepsilon_{i j}-\bar{\varepsilon}_{i}$ implies that

$$
\Sigma_{i} \Sigma_{j}\left(X_{i j}-\bar{X}_{i}\right)^{2} \sim \sigma_{e}^{2} \mathcal{X}_{m(n-1)}^{2}
$$

Since MSA \perp MSE,

$$
\frac{M S A}{M S E} \sim \frac{n \sigma_{a}^{2}+\sigma_{e}^{2}}{\sigma_{e}^{2}} F_{m-1, m(n-1)}
$$

and

$$
E\left(\frac{M S A}{M S E}\right)=(n \theta+1) \frac{m n-m}{m n-m-2} .
$$

Solving

$$
\frac{1}{n}\left((1-\delta)(n \theta+1) \frac{m n-m}{m n-m-2}-1\right)=\theta
$$

we obtain

$$
\delta=\frac{2}{m(n-1)}
$$

c
Since $\frac{M S A}{M S E}=(n \theta+1) F_{m-1, m(n-1)}$ depends only on θ, the risk of $\hat{\theta}(\delta)$ can be expressed by δ and θ.

d

$$
\begin{aligned}
R(\theta, \hat{\theta}(\delta)) & =E(\hat{\theta}(\delta)-\theta)^{2} \\
& =E\left(\hat{\theta}(\delta)^{2}+\theta^{2}-2 \theta \hat{\theta}(\delta)\right) \\
& =(\delta-1)^{2} \frac{1}{n^{2}} E\left(\frac{M S A}{M S E}\right)^{2}+(\delta-1)\left(\frac{2}{n^{2}} E\left(\frac{M S A}{M S E}\right)+\frac{2 \theta}{n} E\left(\frac{M S A}{M S E}\right)\right)+\theta^{2}+\frac{2 \theta}{n}+\frac{1}{n^{2}}
\end{aligned}
$$

$E\left[(\hat{\theta}(\delta)-\theta)^{2}\right]$ is a convex quadratic function of δ, thus we conclude the statement.

e

From (d), $R(\theta, \hat{\theta}(\delta))$ attains minimum at

$$
\delta^{*}=1-\frac{(m n-m-4)(m-1)}{(m+1) m(n-1)}=\frac{2(m n+m-2)}{(m+1) m(n-1)},
$$

$\delta=\frac{2}{m(n+2)} \neq \delta^{*}, R(\theta, \hat{\theta}(\delta))>R\left(\theta, \hat{\theta}\left(\delta^{*}\right)\right)$, so $\hat{\theta}(\delta)$ is inadmissible.

Problem 4 (\#4.80)

The joint Lebesgue density of X_{1}, \ldots, X_{n} is

$$
\theta^{-n} e^{-n \bar{X} / \theta} I_{(0, \infty)}\left(X_{(1)}\right),
$$

where $X_{(1)}$ is the smallest order statistic. Let $T(X)=\bar{X}, \vartheta=-\theta^{-1}$ and $c(\vartheta)=\vartheta^{n}$. Then the joint density is of the form $c(\vartheta) e^{\vartheta} T$ with respect a σ-finite measure and the range of ϑ is $(-\infty, 0)$. For any $\vartheta_{0} \in(-\infty, 0)$,

$$
\int_{-\infty}^{\vartheta_{0}} e^{-b \vartheta / n} \vartheta^{-1} d \vartheta=\int_{\text {theta } a_{0}}^{0} e^{-b \vartheta / n} \vartheta^{-1} d \vartheta=\infty
$$

By Karlin's theorem, we conclude that $(n \bar{X}+b) /(n+1)$ is admissible under the squared error loss. This implies that $(n \bar{X}+b) /(n+1)$ is also admissible under the loss function $L(\theta, a)=(a-\theta)^{2} / \theta^{2}$. Since the risk of $n \bar{X} /(n+1)$ is

$$
\frac{1}{\theta}^{2} E\left(\frac{n \bar{X}}{n+1}-\theta\right)^{2}=\frac{1}{n+1},
$$

$n \bar{X} /(n+1)$ is an admissible estimator with constant risk. Hence it is minimax.

Problem 5 (\#4.75)

The posterior density of μ is proportional to

$$
\exp \left\{-\frac{(\mu-x)^{2}}{2}+\mu\right\} \propto \exp \left\{-\frac{[\mu-(x+1)]^{2}}{2}\right\}
$$

Thus, the posterior distribution of μ is $N(X+1,1)$ and the generalized Bayes estimator is $E(\mu \mid X)=$ $X+1$. Since the risk of $X+1$ is $E(X+1-\mu)^{2}=1+E(X-\mu)^{2}>E(X-\mu)^{2}$, which is the risk of X, we conclude that $X+1$ is neither minimax nor admissible.

Problem 6

(\#4.81)

$$
f\left(X_{1}, \ldots, X_{n}\right)=p^{n \bar{X}}(1-p)^{n-n \bar{X}}=(1-p)^{n} e^{n \bar{X} \log \frac{p}{1-p}}
$$

Let $\theta=n \log \frac{p}{1-p}, c(\theta)=\left(1+e^{\frac{\theta}{n}}\right)^{-n}, T(X)=\bar{X}, T_{\lambda, \gamma}(X)=(T+\gamma \lambda) /(1+\lambda)$. Let $\lambda=0$, we have that $T_{\lambda, \gamma}=T(X)$ and

$$
\int_{\theta_{0}}^{\infty} 1 d \theta=\infty=\int_{-\infty}^{\theta_{0}} 1 d \theta
$$

so $T(X)=\bar{X}$ is admissible. $T_{\lambda, \gamma}(X)=(\bar{X}+\gamma \lambda) /(1+\lambda)$,

$$
\begin{aligned}
\int_{\theta_{0}}^{\infty} e^{-\gamma \lambda \theta}\left(1+e^{\frac{\theta}{n}}\right)^{n \lambda} d \theta & =\int_{\theta_{0}}^{\infty} \exp \left\{-\gamma \lambda \theta+n \lambda \log \left(1+e^{\frac{\theta}{n}}\right)\right\} d \theta & \\
& \geq \int_{\theta_{0}}^{\infty} \exp \{\lambda \theta(1-\gamma)\} d \theta & \text { because } \lambda>0 \\
& \geq \int_{\theta_{0}}^{\infty} \exp \left\{\lambda \theta_{0}(1-\gamma)\right\} d \theta=\infty & \text { because } 0 \leq 1-\gamma \leq 1
\end{aligned}
$$

So $(\bar{X}+\gamma \lambda) /(1+\lambda)$ is admissible for p.

(\#4.82)(i)

The discrete probability density X is $\theta^{x} e^{-\theta} / x!=e^{-e^{\vartheta}} e^{\vartheta x} / x!$, where $\vartheta=\log \theta \in(-\infty, \infty)$. Let $\alpha=(1+\lambda)^{-1}$ and $\beta=\gamma \lambda /(1+\lambda)$.Since

$$
\int_{-\infty}^{0} \frac{e^{-\gamma \lambda \vartheta}}{e^{-\lambda e^{\vartheta}}} d \vartheta=\infty
$$

iff $\lambda \gamma \geq 0$, and

$$
\int_{0}^{\infty} \frac{e^{-\gamma \lambda \vartheta}}{e^{-\lambda e^{\vartheta}}} d \vartheta=\infty
$$

iff $\lambda \geq 0$. And by \#2.73, when $\alpha=1$ and $\beta \neq 0, \alpha X+\beta$ is inadmissible. When $\alpha=0$ and $\beta=0$, $\alpha X+\beta$ is inadmissible. So the conclusion is that $\alpha X+\beta$ is admissible if and only if (α, β) is in the following set:

$$
\{\alpha=0, \beta=0\} \cup\{\alpha=1, \beta=0\} \cup\{0<\alpha<1, \beta \geq 0\} .
$$

(ii)

The discrete probability density of X is $\binom{x-1}{r-1} \frac{p^{r}}{(1-p)^{r}} e^{x \log (1-p)}$. Let $\theta=\log (1-p) \in(-\infty, 0), \alpha=$ $(1+\lambda)^{-1}$, and $\beta=\gamma \lambda /(1+\lambda)$. Note that

$$
\int_{c}^{0} e^{-\lambda \gamma \theta}\left(\frac{e^{\theta}}{1-e^{\theta}}\right)^{\lambda r} d \theta=\infty
$$

iff $\lambda r \geq 1$, i.e., $\alpha \leq \frac{r}{r+1}$;

$$
\int_{-\infty}^{c} e^{-\lambda \gamma \theta}\left(\frac{e^{\theta}}{1-e^{\theta}}\right)^{\lambda r} d \theta=\infty
$$

iff $\gamma>r$, i.e., $\beta>r \lambda /(1+\lambda)=r(1-\alpha)$. The result follows from Karlin's theorem.

