Homework 5

Problem 1
(#2.64)(i)

Note that

Ry, (0) = E(T, — 6)?
=60°P(X < 0.5)+ (1—0)*P(X > 0.5) + (0.5 — 0)*P(X = 0.5).

When n = 2k,
k—1
P(X <05)=>_ ( ) 0)2k=7,
7=0
2k 2]{3
P(X>05) = Y ( )eﬂ( — )+,
j=k+1 J
and

P(X =05) = (2:) 0 (1 — )k

Whenn =2k + 1,

k
2% + 1
P(X <0.5) = Z(;“

J=

>9]( 9)2k+17j7

2k+1

P(X > 05) = Z (Qk‘ + 1) 6i(1 — 0)2F+13

j=k+1 J

and P(X = 0.5) = 0.

(ii)
A direct calculation shows that

Ry, () = BE(Ty — 0)?

= %E(X —0)* + %E(TD —6)?
_01-06) 1




where Ry, () is given in part (i), and
Ry, (0) = E(T, — 0)*

_p X(X—0)2+(%—0)2(1—X)]
:E(X—9)3+9E()_(—9)2+(%—9)2(1—9)
:%iiiE(Xi—Q)(Xj—0)(Xk—9)+w+<%—9)2(1—9)
_ E(;(;;g)er 92(1n_ o G - 9)2 (1—0)

i 0(1—9)37;93(1—0) N 92(1n— 0) . G _9>2(1_9)’

where the forth equality follows from E(X — )2 = Var(X) = 6(1 — 6)/n and the fifth equality
follows from the fact that E(X; — 0)(X; — 0)(X, — 0) #0iffi = j = k.

(#2.69)
Here 7' = 1/2 means the decision rule is random with probability 0.5 to be O or 1.
R(0,T)=E(L(,T))
= L(0,0)P(nX < 0.5n) + L(0,1)P(nX > 0.5n) + %[L(G, 0) + L(6,1)]P(nX = 0.5n).
If Hy is true, i.e. § < 0.5, then L(#,0) = 0 and L(#,1) = C;. So
R(0,T) = C1[P(nX > 0.5n) + 0.5P(nX = 0.5n)].
If H, is true, i.e. @ > 0.5, then L(#,0) = Cy and L(#,1) = 0. So
R(0,T) = Cy[P(nX < 0.5n) + 0.5P(nX = 0.5n)].
Using the fact that n.X ~ Bin(n, ), we have

O (L= )" 4+ 0.5(, )65 (1= 0)0], 9 < 0.5
R(@,T) o {CO[ 23:5? (?)9]’(1 _ Q)n—j + 0.5(0.7;71)90.511(1 _ 9)0.5n:|’ 0> 05
Problem 2(#2.73)
i
Note that

Rogp = E(aX +b—p)?
= a’Var(X) + (ap+ b — p)?
> a*Var(X)
= @’ Rxp)
> Rx(P)
when a > 1. Hence X is better than aX + b with a > 1.
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ii
For b # 0,
R (P)=E(X +b—p)*>=Var(X) +b* > Var(X) = Rg(P).

Hence X is better than X + b with b # 0.

Problem 3 (#2.81)

a

Xij < N(p, 07 +a?).

Since the sample mean and sample variance are independent,
Xi L0 (Xi; — X0)2

Due to between-group independence,

(X — X0)? L Xy i A

Then X7, (X;; — X;)? L (X; — X)% So MSALMSE.

b

[\

X, ~ N(u, 02 + 22), thus
n
v )2 2 T2 a2
Bi(Xi = X)" ~ (o + —5) Xy

On the other hand, X;; — X, = €4 — &; implies that

ZzEJ(XU — Xz>2 ~ O'2X2 (n—1)

€ m

Since MSA 1 MSE,
MSA  no?+ o2
MSE ~ o2 m—1,m(n—1)
and MSA
mn —m
— =l +1)—.
(MSE) (nd+ )mn—m—Q
Solving
1 mn —m
—((1=0)nl+1)——=—-1) =46
R R L
we obtain
2
0= ———.
m(n—1)
C
. MSA _ .
Since = (n0 + 1) Fy.—1 m(n—1) depends only on 6, the risk of 6(9) can be expressed by  and

MSE



d

~

R(0,0(0)) = E(0(5) — 0)*
= E(0(8)% + 6% — 200(0))
5 1

D>

MSA\? 2 _(MSA\ 20 _ [(MSA , 20
=0-1 n_E(M—SE> +<5_1)(EE(M—SE)+EE<M—SE))+9 T

E[(A(6) — 6)?] is a convex quadratic function of ¢, thus we conclude the statement.

(&
From (d), R(6,6(4)) attains minimum at

P (mn—m —4)(m —1) _ 2(mn +m — 2)
(m+1)m(n—1) (m+1)m(n—1)’

0 = sy # 0%.R(6,0(5)) > R(6,0(6")), s0 6(6) is inadmissible.

Problem 4 (#4.80)

The joint Lebesgue density of Xy,..., X, is
07" Lg.00) (X))

where X ;) is the smallest order statistic. Let 7'(X) = X, 9 = —0~! and () = 9. Then the joint
density is of the form c(19)e?T with respect a o-finite measure and the range of 9 is (—oo, 0). For
any vy € (—00,0),

Yo 0
/ ey Y = / e MY Y = o,
- t

o) hetag

By Karlin’s theorem, we conclude that (n.X +b)/(n+ 1) is admissible under the squared error loss.
This implies that (n X +b)/(n+1) is also admissible under the loss function L(6,a) = (a—60)? /6.

Since the risk of n.X /(n + 1) is
12 X >
SEp(2E ) - —
0 n+1 n+1

nX /(n + 1) is an admissible estimator with constant risk. Hence it is minimax.

Problem 5 (#4.75)

The posterior density of . is proportional to

SYRUE SR WY

Thus, the posterior distribution of 1 is N (X 41, 1) and the generalized Bayes estimator is F/(u|X) =
X +1. Since therisk of X + 1is E(X +1—p)?> =1+ E(X — u)? > E(X — p)?, which is the
risk of X, we conclude that X -+ 1 is neither minimax nor admissible.
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Problem 6

(#4.81)

n_nX log ﬁ

1 —p)e
Let § = nlog t£,c(0) = (1 + en) ™", T(X) = X, Th,(X) = (T'+7A)/(1 + A). Let A = 0, we

have that 7}, , = T(X) nd
0o
/ 1df = oo = /
0o

so T(X) = X is admissible. T) ,(X) = (X +~v\) /(1 + A),

/ e (1 +en )"*de_/ exp{—7\0 + nAlog(1 + e«)}dd

90 00
> / exp{ (1 — ~)}db because A >0

0o
> / exp{Ady(1 — ) }df = o0 because 0<1—~<1

0o

So (X +~A)/(1 + )) is admissible for p.

(#4.82)(1)

The discrete probability density X is 6%e~? /z! = e~ ¢” /2!, where ¥ = log € (—o0, 00). Let
=(1+A)"'and 8 =~A\/(1+ )).Since

0 e—'y)\ﬂ
/ —ﬁd’l? = 0
67)\6
—0o0

00 6—7)\19
/ v ——dv =
0
iff A > 0. And by #2.73, when o = 1 and 3 # 0, X + f is inadmissible. When o« = 0 and = 0,

aX + [ is inadmissible. So the conclusion is that « X + /3 is admissible if and only if («, ) is in
the following set:

iff Ay > 0, and

{a=0,=0}U{a=1,6=0}U{0<a< 1,8 >0}
(ii)

The discrete probability density of X is (*~)) (lp;)re”“" log(1=p) Let § = log(1 — p) € (—00,0),a =
(1+X)~' and 8 = yA/(1 + A). Note that

0 of Ar
/6_’\79 — df = oo
. 1—ef
c 0 Ar
—\0 € _
/_Ooe 7(1_69) df = oo

iff y > r,ie.,0 >rA/(1+ ) =r(l — «). The result follows from Karlin’s theorem.

iff \r > 1,1e.,a0 <

r+1’




