
Homework 5

Problem 1

(#2.64)(i)
Note that

RT0(θ) = E(T0 − θ)2

= θ2P (X̄ < 0.5) + (1− θ)2P (X̄ > 0.5) + (0.5− θ)2P (X̄ = 0.5).

When n = 2k,

P (X̄ < 0.5) =
k−1∑
j=0

(
2k

j

)
θj(1− θ)2k−j,

P (X̄ > 0.5) =
2k∑

j=k+1

(
2k

j

)
θj(1− θ)2k−j,

and

P (X̄ = 0.5) =

(
2k

k

)
θk(1− θ)k.

When n = 2k + 1,

P (X̄ < 0.5) =
k∑
j=0

(
2k + 1

j

)
θj(1− θ)2k+1−j,

P (X̄ > 0.5) =
2k+1∑
j=k+1

(
2k + 1

j

)
θj(1− θ)2k+1−j,

and P (X̄ = 0.5) = 0.

(ii)
A direct calculation shows that

RT1(θ) = E(T1 − θ)2

=
1

2
E(X̄ − θ)2 +

1

2
E(T0 − θ)2

=
θ(1− θ)

2n
+

1

2
RT0(θ),
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where RT0(θ) is given in part (i), and

RT2(θ) = E(T2 − θ)2

= E

[
X̄(X̄ − θ)2 +

(
1

2
− θ
)2

(1− X̄)

]

= E(X̄ − θ)3 + θE(X̄ − θ)2 +

(
1

2
− θ
)2

(1− θ)

=
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

E(Xi − θ)(Xj − θ)(Xk − θ) +
θ2(1− θ)

n
+

(
1

2
− θ
)2

(1− θ)

=
E(X1 − θ)3

n2
+
θ2(1− θ)

n
+

(
1

2
− θ
)2

(1− θ)

=
θ(1− θ)3 − θ3(1− θ)

n2
+
θ2(1− θ)

n
+

(
1

2
− θ
)2

(1− θ),

where the forth equality follows from E(X̄ − θ)2 = V ar(X̄) = θ(1 − θ)/n and the fifth equality
follows from the fact that E(Xi − θ)(Xj − θ)(Xk − θ) 6= 0 iff i = j = k.

(#2.69)
Here T = 1/2 means the decision rule is random with probability 0.5 to be 0 or 1.

R(θ, T ) = E(L(θ, T ))

= L(θ, 0)P (nX̄ < 0.5n) + L(θ, 1)P (nX̄ > 0.5n) +
1

2
[L(θ, 0) + L(θ, 1)]P (nX̄ = 0.5n).

If H0 is true, i.e. θ ≤ 0.5, then L(θ, 0) = 0 and L(θ, 1) = C1. So

R(θ, T ) = C1

[
P (nX̄ > 0.5n) + 0.5P (nX̄ = 0.5n)

]
.

If H1 is true, i.e. θ > 0.5, then L(θ, 0) = C0 and L(θ, 1) = 0. So

R(θ, T ) = C0

[
P (nX̄ < 0.5n) + 0.5P (nX̄ = 0.5n)

]
.

Using the fact that nX̄ ∼ Bin(n, θ), we have

R(θ, T ) =

{
C1

[∑n
j=0.5n+1

(
n
j

)
θj(1− θ)n−j + 0.5

(
n

0.5n

)
θ0.5n(1− θ)0.5n

]
, θ ≤ 0.5

C0

[ ∑0.5n
j=1

(
n
j

)
θj(1− θ)n−j + 0.5

(
n

0.5n

)
θ0.5n(1− θ)0.5n

]
, θ > 0.5

Problem 2(#2.73)

i
Note that

RaX̄+b = E(aX̄ + b− µ)2

= a2V ar(X̄) + (aµ+ b− µ)2

≥ a2V ar(X̄)

= a2RX̄(P )

> RX̄(P )

when a > 1. Hence X̄ is better than aX̄ + b with a > 1.
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ii
For b 6= 0,

RX̄+b(P ) = E(X̄ + b− µ)2 = V ar(X̄) + b2 > V ar(X̄) = RX̄(P ).

Hence X̄ is better than X̄ + b with b 6= 0.

Problem 3 (#2.81)

a
Xij

iid∼ N(µ, σ2
a + σ2

e).
Since the sample mean and sample variance are independent,

X̄i ⊥ Σn
j=1(Xij − X̄i)

2.

Due to between-group independence,

Σn
j=1(Xij − X̄i)

2 ⊥ X̄i′ , i
′ 6= i.

Then Σn
j=1(Xij − X̄i)

2 ⊥ (X̄i − X̄)2. So MSA⊥MSE.

b

X̄i ∼ N(µ, σ2
a +

σ2
e

n
), thus

Σi(X̄i − X̄)2 ∼ (σ2
a +

σ2
e

n
)X 2

m−1.

On the other hand, Xij − X̄i = εij − ε̄i implies that

ΣiΣj(Xij − X̄i)
2 ∼ σ2

eX 2
m(n−1).

Since MSA⊥MSE,
MSA

MSE
∼
nσ2

a + σ2
e

σ2
e

Fm−1,m(n−1)

and

E

(
MSA

MSE

)
= (nθ + 1)

mn−m
mn−m− 2

.

Solving
1

n

(
(1− δ)(nθ + 1)

mn−m
mn−m− 2

− 1

)
= θ,

we obtain
δ =

2

m(n− 1)
.

c

Since
MSA

MSE
= (nθ+ 1)Fm−1,m(n−1) depends only on θ, the risk of θ̂(δ) can be expressed by δ and

θ.
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d

R(θ, θ̂(δ)) = E(θ̂(δ)− θ)2

= E(θ̂(δ)2 + θ2 − 2θθ̂(δ))

= (δ − 1)2 1

n2
E

(
MSA

MSE

)2

+ (δ − 1)

(
2

n2
E

(
MSA

MSE

)
+

2θ

n
E

(
MSA

MSE

))
+ θ2 +

2θ

n
+

1

n2

E[(θ̂(δ)− θ)2] is a convex quadratic function of δ, thus we conclude the statement.

e
From (d), R(θ, θ̂(δ)) attains minimum at

δ∗ = 1− (mn−m− 4)(m− 1)

(m+ 1)m(n− 1)
=

2(mn+m− 2)

(m+ 1)m(n− 1)
,

δ = 2
m(n+2)

6= δ∗,R(θ, θ̂(δ)) > R(θ, θ̂(δ∗)), so θ̂(δ) is inadmissible.

Problem 4 (#4.80)
The joint Lebesgue density of X1, . . . , Xn is

θ−ne−nX̄/θI(0,∞)(X(1)),

where X(1) is the smallest order statistic. Let T (X) = X̄, ϑ = −θ−1 and c(ϑ) = ϑn. Then the joint
density is of the form c(ϑ)eϑT with respect a σ-finite measure and the range of ϑ is (−∞, 0). For
any ϑ0 ∈ (−∞, 0), ∫ ϑ0

−∞
e−bϑ/nϑ−1dϑ =

∫ 0

theta0

e−bϑ/nϑ−1dϑ =∞.

By Karlin’s theorem, we conclude that (nX̄+b)/(n+1) is admissible under the squared error loss.
This implies that (nX̄+b)/(n+1) is also admissible under the loss function L(θ, a) = (a−θ)2/θ2.
Since the risk of nX̄/(n+ 1) is

1

θ

2

E

(
nX̄

n+ 1
− θ
)2

=
1

n+ 1
,

nX̄/(n+ 1) is an admissible estimator with constant risk. Hence it is minimax.

Problem 5 (#4.75)
The posterior density of µ is proportional to

exp

{
−(µ− x)2

2
+ µ

}
∝ exp

{
− [µ− (x+ 1)]2

2

}
.

Thus, the posterior distribution of µ isN(X+1, 1) and the generalized Bayes estimator isE(µ|X) =
X + 1. Since the risk of X + 1 is E(X + 1− µ)2 = 1 + E(X − µ)2 > E(X − µ)2, which is the
risk of X , we conclude that X + 1 is neither minimax nor admissible.
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Problem 6

(#4.81)

f(X1, . . . , Xn) = pnX̄(1− p)n−nX̄ = (1− p)nenX̄ log p
1−p

Let θ = n log p
1−p , c(θ) = (1 + e

θ
n )−n, T (X) = X̄, Tλ,γ(X) = (T + γλ)/(1 + λ). Let λ = 0, we

have that Tλ,γ = T (X) and ∫ ∞
θ0

1dθ =∞ =

∫ θ0

−∞
1dθ,

so T (X) = X̄ is admissible. Tλ,γ(X) = (X̄ + γλ)/(1 + λ),∫ ∞
θ0

e−γλθ(1 + e
θ
n )nλdθ =

∫ ∞
θ0

exp{−γλθ + nλ log(1 + e
θ
n )}dθ

≥
∫ ∞
θ0

exp{λθ(1− γ)}dθ because λ > 0

≥
∫ ∞
θ0

exp{λθ0(1− γ)}dθ =∞ because 0 ≤ 1− γ ≤ 1

So (X̄ + γλ)/(1 + λ) is admissible for p.

(#4.82)(i)
The discrete probability density X is θxe−θ/x! = e−e

ϑ
eϑx/x!, where ϑ = log θ ∈ (−∞,∞). Let

α = (1 + λ)−1 and β = γλ/(1 + λ).Since∫ 0

−∞

e−γλϑ

e−λeϑ
dϑ =∞

iff λγ ≥ 0, and ∫ ∞
0

e−γλϑ

e−λeϑ
dϑ =∞

iff λ ≥ 0. And by #2.73, when α = 1 and β 6= 0, αX + β is inadmissible. When α = 0 and β = 0,
αX + β is inadmissible. So the conclusion is that αX + β is admissible if and only if (α, β) is in
the following set:

{α = 0, β = 0} ∪ {α = 1, β = 0} ∪ {0 < α < 1, β ≥ 0}.

(ii)
The discrete probability density of X is

(
x−1
r−1

)
pr

(1−p)r e
x log(1−p). Let θ = log(1− p) ∈ (−∞, 0), α =

(1 + λ)−1, and β = γλ/(1 + λ). Note that∫ 0

c

e−λγθ
(

eθ

1− eθ

)λr
dθ =∞

iff λr ≥ 1, i.e.,α ≤ r

r + 1
; ∫ c

−∞
e−λγθ

(
eθ

1− eθ

)λr
dθ =∞

iff γ > r, i.e.,β > rλ/(1 + λ) = r(1− α). The result follows from Karlin’s theorem.
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