Homework 6: Due 03/06/2018

- 1. (20 points) Consider squared error loss and construct James-Stein Estimator.
 - (a) Why shrinkage estimators were more interesting than any other type of linear estimators? Let X be a r.v. in \mathbb{R} with $E(X) = \mu$ and $Var(X) = \Sigma$. Consider linear estimators

$$\delta_{a,b}(X) = aX + b, \quad \forall a \in \mathbb{R}, b \in \mathbb{R}^p.$$

Show that $\delta_{ab}(X)$ is inadmissible for either of the following three cases: (1) a < 0, or (2) a > 1, or (3) $a = 1, b \neq 0$.

Remark: Letting w = 1 - a and $\mu_0 = b/(1 - a)$, this result suggests if we want an admissible linear estimator, it has to be in the form of shrinkage estimators:

$$\delta(X) = (1 - w)X + w\mu_0, \quad w \in [0, 1], \mu_0 \in \mathbb{R}^p.$$

(b) For simplicity, let's assume $b = 0, \Sigma = I_p$. Among all linear estimators $aX, a \in [0, 1]$ (which are admissible), prove that $\hat{a}X$ has the smallest risk, where

$$\hat{a} = \frac{\|\mu\|^2/p}{\|\mu\|^2/p+1},$$

and compare it with the risk of X. Remark: Obviously, $\hat{a} < 1$, hence it is an shrinkage estimator. But $\hat{a}X$ is not an estimator in the usual sense, since it contains unknown μ . (It is sometimes called "oracle estimator".) In the following, we will try to estimate it.

(c) The form of \hat{a} can be also derived from Baysian prespective. Consider the following hierarchical model:

$$\begin{split} X &= \mu + \varepsilon, \quad \varepsilon \sim N(0, I_p) \\ & \mu \sim N(0, \tau^2 I_p), \theta \bot\!\!\!\!\bot \varepsilon \end{split}$$

Prove that the Bayes estimator for μ is $\hat{\mu} = \tilde{a}X$ where

$$\tilde{a} = \frac{\tau^2}{\tau^2 + 1}.$$

Remark: in the previous part, $\|\mu\|^2/p$ can be viewed as the variance of μ , which is corresponding to τ^2 here.

(d) Empirical Bayes method can be used to estimate τ^2 (or $\|\mu\|^2/p$). First show that the marginal distribution of X is $N(0, (\tau^2 + 1)I_p)$. Then, based on the sufficient and complete statistic $\|X\|^2$ for τ^2 , derive the UMVUE for $\frac{\tau^2}{\tau^2+1}$. (Hint: $\|X\|^2 \sim Gamma$)

Remark: Plug-in your UMVUE in the previous part, then you will get the James-Stein's estimator (with c = 0).

2. (30 points) Problem 96 +100 on page 312 of Shao (2003).