
Homework 7

Problem 1 (# 4.105)
The log-likelihood function is

log l(α, θ) = n logα− n log θ + (α− 1)
n∑
i=1

logXi −
1

θ

n∑
i=1

Xα
i .

Hence, the likelihood equations are

∂ log l(α, θ)

∂α
=
n

α
+

n∑
i=1

logXi −
1

θ

n∑
i=1

Xα
i logXi = 0

and
∂ log l(α, θ)

∂θ
= −n

θ
+

1

θ2

n∑
i=1

Xα
i = 0,

which are equivalent to h(α) = n−1
∑n

i=1 logXi and θ = n−1
∑n

i=1 X
α
i . Note that

h′(α) =

∑n
i=1X

α
i (logXi)

2
∑n

i=1 X
α
i − (

∑n
i=1 X

α
i logXi)

2

(
∑n

i=1X
α
i )2

+
1

α2
> 0

by the Cauchy-Schwarz inequality. Thus, h(α) is increasing. Since h is continuous, limα→0 h(α) =
−∞, and

lim
α→∞

h(α) = lim
α→∞

∑n
i=1( Xi

X(n)
)α logXi∑n

i=1( Xi
X(n)

)α
= logX(n) >

1

n

n∑
i=1

logXi,

where X(n) is the largest order statistic and the inequality holds as long as Xi’s are not identical,
we conclude that the likelihood equations have a unique solution.

Problem 1 (# 4.112)

i
Let X(n) be the largest order statistic. Then θ̂ = X(n) and T (X) = n+1

n
X(n). The mean squared

error of θ̂ is

E(X(n) − θ)2 =
2θ2

(n+ 1)(n+ 2)

and the mean squared error of T is

E(T − θ)2 =
θ2

n(n+ 2)
.

The ratio is n+1
2n
. When n ≥ 2, this ratio is less than 1 and, therefore, the MLE θ̂ is inadmissible.
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ii
From

P (n(θ − θ̂) ≤ x) = P (X(n) ≥ θ − x

n
)

= θ−n
∫ θ

θ−x/n
ntn−tdt

= 1− (1− x

nθ
)n

→ 1− e−x/θ

as n→∞, we conclude that n(θ − θ̂)→d Z0,θ. From

n(θ − T ) = n(θ − θ̂)− θ̂

and Slutsky’s theorem, we conclude that n(θ− T )→d Z0,θ − θ, which has the same distribution as
Z−θ,θ. The asymptotic relative efficiency of θ̂ with respect to T is E(Z2

−θ,θ)/E(Z2
0,θ) = θ2/(θ2 +

θ2) = 1
2
.

Problem 3

(a)
Denote the sample median as θ̂1n. θ̂1n is the MLE.

√
n(θ̂1n − θ)→D N(0, I−1(θ0))

where I(θ0) = var(sign(Xi − θ)) = E(sign(Xi − θ)2) = 1. By CLT:
√
n(X̄n − θ) →D N(0, 2)

since var(Xi) = var(ei) = 2, are(θ̂1n, X̄) = 2
1

= 2. So θ̂1n is better.

(b)
By CLT:

√
n(X̄n − θ) →D N(0, 1). Since var(Xi) = var(ei) = 1, f(θ) = f0(0) = (2π)−

1
2 . By

theorem:
√
n(θ̂1n − θ) →D N(0, [2f(θ)]−2) = N(0, π

2
). are(θ̂1n, X̄) = 1

π/2
= 2

π
< 1. So X̄ is

better.

(c)
√
n(x̄n−θ)→D N(0, π

2

3
) because the variance of the logistic distribution is σ2π2

3
.
√
n(θ̂1n−θ)→D

N(0, [2f(θ)]−2), f(θ) = f0(0) = 1
4
, are(θ̂1n, X̄) = π2

12
< 1. X̄ is better.

(d)

var(Xi) = var(ei) = γ
γ−2

, f(0) = f0(0) =
Γ( γ+1

2 )
√
γπΓ( γ2 )

.
√
n(X̄−θ)→D N(0, γ

γ−2
),
√
n(θ̂1n−θ)→D

N

(
0,

(
2Γ( γ+1

2 )
√
γπΓ( γ2 )

)−2
)

.
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are(θ̂1n, X̄) =

γ
γ−2(

2Γ( γ+1
2

)
√
γπΓ( γ

2
)

)−2 =


16
π2 > 1 γ = 3
9
8
> 1 γ = 4

256
27π2 < 1 γ = 5

(1)

θ̂1n is better when γ = 3, 4; X̄ is better when γ = 5.

Problem 4

(a)
X̄ is MLE of µ. θ̂1n = Φ(c − µ̂) = Φ(c − X̄) is the MLE of θ. By CLT,

√
n(X̂ − µ) →D

N(0, 1). By δ-method,
√
n(Φ(c− X̄)−Φ(c−µ))→D N [0, (Φ′(c−µ))2] = N(0, 1

2π
e−(c−µ)2). So√

n(θ̂1n − θ)→D N(0, 1
2π
e−(c−µ)2).

(b)
E[1(X1 ≤ c)] = P (X1 ≤ c) = θ, X̄ is complete and sufficient. By Rao-Blackwell’s thm,

E[1(X1 ≤ c)|X̄] = P (X1 ≤ c|X̄) is the UMVUE of P (X1 ≤ c). (X1, X̄) ∼ N2

(
µ,

(
1 1

n
1
n

1
n

))
⇒

X1|X̄ ∼ N(X̄, 1 − 1
n
) ⇒ θ̂2n = P (X1 ≤ c|X̄) = Φ

 c− X̄√
1− 1

n

 is the UMVUE of θ. By δ-

method
√
n

Φ

 c− X̄√
1− 1

n

− Φ

 c− µ√
1− 1

n

→D N

(
0,

1

2π
e
− (c−µ)2

(1− 1
n )

)
. So are(θ̂1n − θ̂2n) =

limn→∞
var(θ̂2n)

var(θ̂1n)
= limn→∞

e
− (c−µ)2

(1− 1
n )

e−(c−µ)2
= 1. So θ̂1n and θ̂2n are asymptotically equivalent.

(c)
1(Xi ≤ c) ∼ Bin(θ, 1), θ = P (Xi ≤ c) = Φ(c− µ). By CLT,

√
n(θ̂3n − θ)→D N(0, θ(1− θ)),

are(θ̂1n, θ̂3n) =
θ(1− θ)
φ2(c− µ)

=
Φ(c− µ)[1− Φ(c− µ)]

φ2(c− µ)
.

Let t = c− µ, then

d

dt
are(θ̂1n, θ̂3n) =

d

dt

Φ(t)[1− Φ(t)]

φ2(t)
=

1− 2Φ(t)

φ(t)
,

which is < 0 for t < 0, > 0 for t > 0, and = 0 iff t = 0. Therefore, the are(θ̂1n, θ̂3n) is maximized
at c = µ and

max are(θ̂1n, θ̂3n) =
√

2π/4 ≈ 0.627 < 1,

which implies the MLE of θ is asymptotically more efficient than the nonparametric estimator θ̂3n.
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(d)
First µ|X ∼ N(µ∗, d2), where

µ∗ =
σ2

nσ2
0 + σ2

µ0 +
nσ2

0

nσ2
0 + σ2

X̄ and d2 =
σ2σ2

0

nσ2
0 + σ2

.

Furthermore, with respect to squared error loss function, θ̂4n = E[Φ(c− µ)|X].
Here Φ(c−µ)|X is a nonlinear transformation of µ|X , whose mean is hard to evaluate analytically.
But we can consider the conditional mean given X̄ in the asymptotic sense. Since

µ− X̄|X̄ ∼ N
( σ2

nσ2
0 + σ2

(X̄ − µ0),
σ2σ2

0

nσ2
0 + σ2

)
,

we have √
n(µ− X̄)|X̄ →D N(0, σ2).

By delta-method,
√
n(Φ(c− µ)− Φ(c− X̄)) | X̄ →D N(0, φ2(c− X̄)σ2) = N(0, φ2(c− X̄)).

That is
Φ(c− µ)|X̄ = Φ(c− X̄) +

1√
n
N(0, φ2(c− X̄)) + oP (n−1/2).

Hence θ̂4n = E(Φ(c − µ)|X̄) = Φ(c − X̄)) + oP (n−1/2). Therefore, the Bayesian estimator is
asymptotically equivalent to the MLE up the order n−1/2.

Problem 5
When θ 6= 0

P (|X̄| ≤ n−
1
4 ) = P (

√
n(−n−

1
4 − θ) ≤

√
n(X̄ − θ) ≤

√
n(n−

1
4 − θ))

= Φ(
√
n(n−

1
4 − θ))− Φ(

√
n(−n−

1
4 − θ))

→ 0 as n→∞.

So P ( ˆθn = X̄)→ 1. So
√
n(θ̂n − θ) =

√
n(θ̂ − X̄n) +

√
n(X̄n − θ)→D N(0, 1) by CLT.

When θ = 0, X̄ →a.s. 0. So P (θ̂ = 0)→ 1. Thus
√
n(θn − θ)→D N(0, 0).
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