Homework 7

Problem 1 (\# 4.105)

The log-likelihood function is

$$
\log l(\alpha, \theta)=n \log \alpha-n \log \theta+(\alpha-1) \sum_{i=1}^{n} \log X_{i}-\frac{1}{\theta} \sum_{i=1}^{n} X_{i}^{\alpha} .
$$

Hence, the likelihood equations are

$$
\frac{\partial \log l(\alpha, \theta)}{\partial \alpha}=\frac{n}{\alpha}+\sum_{i=1}^{n} \log X_{i}-\frac{1}{\theta} \sum_{i=1}^{n} X_{i}^{\alpha} \log X_{i}=0
$$

and

$$
\frac{\partial \log l(\alpha, \theta)}{\partial \theta}=-\frac{n}{\theta}+\frac{1}{\theta^{2}} \sum_{i=1}^{n} X_{i}^{\alpha}=0
$$

which are equivalent to $h(\alpha)=n^{-1} \sum_{i=1}^{n} \log X_{i}$ and $\theta=n^{-1} \sum_{i=1}^{n} X_{i}^{\alpha}$. Note that

$$
h^{\prime}(\alpha)=\frac{\sum_{i=1}^{n} X_{i}^{\alpha}\left(\log X_{i}\right)^{2} \sum_{i=1}^{n} X_{i}^{\alpha}-\left(\sum_{i=1}^{n} X_{i}^{\alpha} \log X_{i}\right)^{2}}{\left(\sum_{i=1}^{n} X_{i}^{\alpha}\right)^{2}}+\frac{1}{\alpha^{2}}>0
$$

by the Cauchy-Schwarz inequality. Thus, $h(\alpha)$ is increasing. Since h is continuous, $\lim _{\alpha \rightarrow 0} h(\alpha)=$ $-\infty$, and

$$
\lim _{\alpha \rightarrow \infty} h(\alpha)=\lim _{\alpha \rightarrow \infty} \frac{\sum_{i=1}^{n}\left(\frac{X_{i}}{X_{(n)}}\right)^{\alpha} \log X_{i}}{\sum_{i=1}^{n}\left(\frac{X_{i}}{X_{(n)}}\right)^{\alpha}}=\log X_{(n)}>\frac{1}{n} \sum_{i=1}^{n} \log X_{i},
$$

where $X_{(n)}$ is the largest order statistic and the inequality holds as long as X_{i} 's are not identical, we conclude that the likelihood equations have a unique solution.

Problem 1 (\# 4.112)

i

Let $X_{(n)}$ be the largest order statistic. Then $\hat{\theta}=X_{(n)}$ and $T(X)=\frac{n+1}{n} X_{(n)}$. The mean squared error of $\hat{\theta}$ is

$$
E\left(X_{(n)}-\theta\right)^{2}=\frac{2 \theta^{2}}{(n+1)(n+2)}
$$

and the mean squared error of T is

$$
E(T-\theta)^{2}=\frac{\theta^{2}}{n(n+2)} .
$$

The ratio is $\frac{n+1}{2 n}$. When $n \geq 2$, this ratio is less than 1 and, therefore, the MLE $\hat{\theta}$ is inadmissible.

ii

From

$$
\begin{aligned}
P(n(\theta-\hat{\theta}) \leq x) & =P\left(X_{(n)} \geq \theta-\frac{x}{n}\right) \\
& =\theta^{-n} \int_{\theta-x / n}^{\theta} n t^{n-t} d t \\
& =1-\left(1-\frac{x}{n \theta}\right)^{n} \\
& \rightarrow 1-e^{-x / \theta}
\end{aligned}
$$

as $n \rightarrow \infty$, we conclude that $n(\theta-\hat{\theta}) \rightarrow_{d} Z_{0, \theta}$. From

$$
n(\theta-T)=n(\theta-\hat{\theta})-\hat{\theta}
$$

and Slutsky's theorem, we conclude that $n(\theta-T) \rightarrow_{d} Z_{0, \theta}-\theta$, which has the same distribution as $Z_{-\theta, \theta}$. The asymptotic relative efficiency of $\hat{\theta}$ with respect to T is $E\left(Z_{-\theta, \theta}^{2}\right) / E\left(Z_{0, \theta}^{2}\right)=\theta^{2} /\left(\theta^{2}+\right.$ $\left.\theta^{2}\right)=\frac{1}{2}$.

Problem 3

(a)

Denote the sample median as $\hat{\theta}_{1 n} . \hat{\theta}_{1 n}$ is the MLE.

$$
\sqrt{n}\left(\hat{\theta}_{1 n}-\theta\right) \rightarrow_{D} N\left(0, I^{-1}\left(\theta_{0}\right)\right)
$$

where $I\left(\theta_{0}\right)=\operatorname{var}\left(\operatorname{sign}\left(X_{i}-\theta\right)\right)=E\left(\operatorname{sign}\left(X_{i}-\theta\right)^{2}\right)=1$. By CLT: $\sqrt{n}\left(\bar{X}_{n}-\theta\right) \rightarrow_{D} N(0,2)$ since $\operatorname{var}\left(X_{i}\right)=\operatorname{var}\left(e_{i}\right)=2$, $\operatorname{are}\left(\hat{\theta}_{1 n}, \bar{X}\right)=\frac{2}{1}=2$. So $\hat{\theta}_{1 n}$ is better.
(b)

By CLT: $\sqrt{n}\left(\bar{X}_{n}-\theta\right) \rightarrow_{D} N(0,1)$. Since $\operatorname{var}\left(X_{i}\right)=\operatorname{var}\left(e_{i}\right)=1, f(\theta)=f_{0}(0)=(2 \pi)^{-\frac{1}{2}}$. By theorem: $\sqrt{n}\left(\hat{\theta}_{1 n}-\theta\right) \rightarrow_{D} N\left(0,[2 f(\theta)]^{-2}\right)=N\left(0, \frac{\pi}{2}\right)$. $\operatorname{are}\left(\hat{\theta}_{1 n}, \bar{X}\right)=\frac{1}{\pi / 2}=\frac{2}{\pi}<1$. So \bar{X} is better.

(c)

$\sqrt{n}\left(\bar{x}_{n}-\theta\right) \rightarrow_{D} N\left(0, \frac{\pi^{2}}{3}\right)$ because the variance of the logistic distribution is $\frac{\sigma^{2} \pi^{2}}{3} \cdot \sqrt{n}\left(\hat{\theta}_{1 n}-\theta\right) \rightarrow_{D}$ $N\left(0,[2 f(\theta)]^{-2}\right), f(\theta)=f_{0}(0)=\frac{1}{4}$, are $\left(\hat{\theta}_{1 n}, \bar{X}\right)=\frac{\pi^{2}}{12}<1 . \bar{X}$ is better.
(d)
$\operatorname{var}\left(X_{i}\right)=\operatorname{var}\left(e_{i}\right)=\frac{\gamma}{\gamma-2}, f(0)=f_{0}(0)=\frac{\Gamma\left(\frac{\gamma+1}{2}\right)}{\sqrt{\gamma \pi \Gamma}\left(\frac{\gamma}{2}\right)} \cdot \sqrt{n}(\bar{X}-\theta) \rightarrow_{D} N\left(0, \frac{\gamma}{\gamma-2}\right), \sqrt{n}\left(\hat{\theta}_{1 n}-\theta\right) \rightarrow_{D}$ $N\left(0,\left(\frac{2 \Gamma\left(\frac{\gamma+1}{2}\right)}{\sqrt{\gamma \pi \Gamma\left(\frac{\gamma}{2}\right)}}\right)^{-2}\right)$.

$$
\operatorname{are}\left(\hat{\theta}_{1 n}, \bar{X}\right)=\frac{\frac{\gamma}{\gamma-2}}{\left(\frac{2 \Gamma\left(\frac{\gamma+1}{2}\right)}{\left.\sqrt{\gamma \pi \Gamma\left(\frac{\gamma}{2}\right)}\right)^{-2}}\right.}= \begin{cases}\frac{16}{\pi^{2}}>1 & \gamma=3 \tag{1}\\ \frac{9}{8}>1 & \gamma=4 \\ \frac{256}{27 \pi^{2}}<1 & \gamma=5\end{cases}
$$

$\hat{\theta}_{1 n}$ is better when $\gamma=3,4 ; \bar{X}$ is better when $\gamma=5$.

Problem 4

(a)
\bar{X} is MLE of μ. $\hat{\theta}_{1 n}=\Phi(c-\hat{\mu})=\Phi(c-\bar{X})$ is the MLE of θ. By CLT, $\sqrt{n}(\hat{X}-\mu) \rightarrow_{D}$ $N(0,1)$. By δ-method, $\sqrt{n}(\Phi(c-\bar{X})-\Phi(c-\mu)) \rightarrow_{D} N\left[0,\left(\Phi^{\prime}(c-\mu)\right)^{2}\right]=N\left(0, \frac{1}{2 \pi} e^{-(c-\mu)^{2}}\right)$. So $\sqrt{n}\left(\hat{\theta}_{1 n}-\theta\right) \rightarrow_{D} N\left(0, \frac{1}{2 \pi} e^{-(c-\mu)^{2}}\right)$.
(b)
$E\left[1\left(X_{1} \leq c\right)\right]=P\left(X_{1} \leq c\right)=\theta, \bar{X}$ is complete and sufficient. By Rao-Blackwell's thm, $E\left[1\left(X_{1} \leq c\right) \mid \bar{X}\right]=P\left(X_{1} \leq c \mid \bar{X}\right)$ is the UMVUE of $P\left(X_{1} \leq c\right) .\left(X_{1}, \bar{X}\right) \sim N_{2}\left(\mu,\left(\begin{array}{cc}1 & \frac{1}{n} \\ \frac{1}{n} & \frac{1}{n}\end{array}\right)\right) \Rightarrow$ $X_{1} \left\lvert\, \bar{X} \sim N\left(\bar{X}, 1-\frac{1}{n}\right) \Rightarrow \hat{\theta}_{2 n}=P\left(X_{1} \leq c \mid \bar{X}\right)=\Phi\left(\frac{c-\bar{X}}{\sqrt{1-\frac{1}{n}}}\right)\right.$ is the UMVUE of θ. By δ $\operatorname{method} \sqrt{n}\left(\Phi\left(\frac{c-\bar{X}}{\sqrt{1-\frac{1}{n}}}\right)-\Phi\left(\frac{c-\mu}{\sqrt{1-\frac{1}{n}}}\right)\right) \rightarrow_{D} N\left(0, \frac{1}{2 \pi} e^{-\frac{(c-\mu)^{2}}{\left(1-\frac{1}{n}\right)}}\right)$. So $\operatorname{are}\left(\hat{\theta}_{1 n}-\hat{\theta}_{2 n}\right)=$ $\lim _{n \rightarrow \infty} \frac{\operatorname{var}\left(\hat{\theta}_{2 n}\right)}{\operatorname{var}\left(\hat{\theta}_{1 n}\right)}=\lim _{n \rightarrow \infty} \frac{e^{-\frac{(c-\mu)^{2}}{\left(1-\frac{1}{n}\right)}}}{e^{-(c-\mu)^{2}}}=1$. So $\hat{\theta}_{1 n}$ and $\hat{\theta}_{2 n}$ are asymptotically equivalent.

(c)

$1\left(X_{i} \leq c\right) \sim \operatorname{Bin}(\theta, 1), \theta=P\left(X_{i} \leq c\right)=\Phi(c-\mu)$. By CLT,

$$
\begin{gathered}
\sqrt{n}\left(\hat{\theta}_{3 n}-\theta\right) \rightarrow_{D} N(0, \theta(1-\theta)), \\
\operatorname{are}\left(\hat{\theta}_{1 n}, \hat{\theta}_{3 n}\right)=\frac{\theta(1-\theta)}{\phi^{2}(c-\mu)}=\frac{\Phi(c-\mu)[1-\Phi(c-\mu)]}{\phi^{2}(c-\mu)} .
\end{gathered}
$$

Let $t=c-\mu$, then

$$
\frac{d}{d t} \operatorname{are}\left(\hat{\theta}_{1 n}, \hat{\theta}_{3 n}\right)=\frac{d}{d t} \frac{\Phi(t)[1-\Phi(t)]}{\phi^{2}(t)}=\frac{1-2 \Phi(t)}{\phi(t)}
$$

which is <0 for $t<0,>0$ for $t>0$, and $=0$ iff $t=0$. Therefore, the $\operatorname{are}\left(\hat{\theta}_{1 n}, \hat{\theta}_{3 n}\right)$ is maximized at $c=\mu$ and

$$
\max \operatorname{are}\left(\hat{\theta}_{1 n}, \hat{\theta}_{3 n}\right)=\sqrt{2 \pi} / 4 \approx 0.627<1
$$

which implies the MLE of θ is asymptotically more efficient than the nonparametric estimator $\hat{\theta}_{3 n}$.
(d)

First $\mu \mid X \sim N\left(\mu^{*}, d^{2}\right)$, where

$$
\mu_{*}=\frac{\sigma^{2}}{n \sigma_{0}^{2}+\sigma^{2}} \mu_{0}+\frac{n \sigma_{0}^{2}}{n \sigma_{0}^{2}+\sigma^{2}} \bar{X} \quad \text { and } \quad d^{2}=\frac{\sigma^{2} \sigma_{0}^{2}}{n \sigma_{0}^{2}+\sigma^{2}} .
$$

Furthermore, with respect to squared error loss function, $\hat{\theta}_{4 n}=E[\Phi(c-\mu) \mid X]$.
Here $\Phi(c-\mu) \mid X$ is a nonlinear transformation of $\mu \mid X$, whose mean is hard to evaluate analytically. But we can consider the conditional mean given \bar{X} in the asymptotic sense. Since

$$
\mu-\bar{X} \left\lvert\, \bar{X} \sim N\left(\frac{\sigma^{2}}{n \sigma_{0}^{2}+\sigma^{2}}\left(\bar{X}-\mu_{0}\right), \frac{\sigma^{2} \sigma_{0}^{2}}{n \sigma_{0}^{2}+\sigma^{2}}\right)\right.
$$

we have

$$
\sqrt{n}(\mu-\bar{X}) \mid \bar{X} \rightarrow_{D} N\left(0, \sigma^{2}\right) .
$$

By delta-method,

$$
\sqrt{n}(\Phi(c-\mu)-\Phi(c-\bar{X})) \mid \bar{X} \rightarrow_{D} N\left(0, \phi^{2}(c-\bar{X}) \sigma^{2}\right)=N\left(0, \phi^{2}(c-\bar{X})\right) .
$$

That is

$$
\Phi(c-\mu) \left\lvert\, \bar{X}=\Phi(c-\bar{X})+\frac{1}{\sqrt{n}} N\left(0, \phi^{2}(c-\bar{X})\right)+o_{P}\left(n^{-1 / 2}\right)\right.
$$

Hence $\left.\hat{\theta}_{4 n}=E(\Phi(c-\mu) \mid \bar{X})=\Phi(c-\bar{X})\right)+o_{P}\left(n^{-1 / 2}\right)$. Therefore, the Bayesian estimator is asymptotically equivalent to the MLE up the order $n^{-1 / 2}$.

Problem 5

When $\theta \neq 0$

$$
\begin{array}{rlrl}
P\left(|\bar{X}| \leq n^{-\frac{1}{4}}\right) & =P\left(\sqrt{n}\left(-n^{-\frac{1}{4}}-\theta\right) \leq \sqrt{n}(\bar{X}-\theta) \leq \sqrt{n}\left(n^{-\frac{1}{4}}-\theta\right)\right) & \\
& =\Phi\left(\sqrt{n}\left(n^{-\frac{1}{4}}-\theta\right)\right)-\Phi\left(\sqrt{n}\left(-n^{-\frac{1}{4}}-\theta\right)\right) & & \\
& \rightarrow 0 & \text { as } n \rightarrow \infty .
\end{array}
$$

So $P\left(\theta_{n} \hat{=} \bar{X}\right) \rightarrow 1$. So $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)=\sqrt{n}\left(\hat{\theta}-\bar{X}_{n}\right)+\sqrt{n}\left(\bar{X}_{n}-\theta\right) \rightarrow_{D} N(0,1)$ by CLT. When $\theta=0, \bar{X} \rightarrow_{a . s .} 0$. So $P(\hat{\theta}=0) \rightarrow 1$. Thus $\sqrt{n}\left(\theta_{n}-\theta\right) \rightarrow_{D} N(0,0)$.

