Homework 7

Problem 1 (\#5.11)

Consider the Lagrange multiplier method with

$$
H\left(p_{1}, \ldots, p_{n}, \tau, \lambda\right)=\sum_{i=1}^{n} \log p_{i}+\tau\left(\sum_{i=1}^{n} p_{i}-1\right)-n \lambda^{\tau} \sum_{i=1}^{n} p_{i} u_{i} .
$$

Taking the derivatives of H and setting them to 0 , we obtain that

$$
\frac{1}{p_{i}}+\tau-n \lambda_{\tau} \mu_{i}=0, i=1, \ldots, n, \sum_{i=1}^{n} p_{i} \mu_{i}=0
$$

The solution to these equations is $\tau=-n$ and

$$
\hat{p}_{i}=\frac{1}{n\left(1+\lambda^{\tau} \mu_{i}\right)}, i=1, \ldots, n
$$

Substituting \hat{p}_{i} into $\sum_{i=1}^{n} p_{i} \mu_{i}=0$, we conclude that λ is the solution of

$$
\sum_{i=1}^{n} \frac{\mu_{i}}{1+\lambda^{\tau} \mu_{i}}=0
$$

Problem 2 (\# 5.15)

i
Since

$$
\begin{gathered}
1-q_{i}=1-\frac{p_{i}}{\sum_{j=i}^{n+1} p_{j}}=\frac{\sum_{j=i+1}^{n+1} p_{j}}{\sum_{j=i}^{n+1} p_{j}} \\
\prod_{i=1}^{n} q_{i}^{\delta_{i}}\left(1-q_{i}\right)^{1-\delta_{i}}=\prod_{i=1}^{n} p_{i}^{\delta_{i}}\left(\sum_{j=i+1}^{n+1} p_{j}\right)^{1-\delta_{i}}\left(\sum_{j=i}^{n+1} p_{j}\right)^{-1}
\end{gathered}
$$

From

$$
\begin{aligned}
\prod_{i=1}^{n}\left(1-q_{i}\right)^{n-i}= & \left(\frac{\sum_{j=2}^{n+1} p_{j}}{\sum_{j=1}^{n+1} p_{j}}\right)^{n-1}\left(\frac{\sum_{j=3}^{n+1} p_{j}}{\sum_{j=2}^{n+1} p_{j}}\right)^{n-2} \ldots\left(\frac{\sum_{j=n}^{n+1} p_{j}}{\sum_{j=n-1}^{n+1} p_{j}}\right) \\
& =\sum_{j=2}^{n+1} p_{j} \sum_{j=3}^{n+1} p_{j} \ldots \sum_{j=n}^{n+1} p_{j}
\end{aligned}
$$

$$
=\prod_{i=1}^{n} \sum_{j=i}^{n+1} p_{j}
$$

We obtain that

$$
\prod_{i=1}^{n} q_{i}^{\delta_{i}}\left(1-q_{i}\right)^{n-i+1-\delta_{i}}=\prod_{i=1}^{n} p_{i}^{\delta_{i}}\left(\sum_{j=i+1}^{n+1} p_{j}\right)^{1-\delta_{i}}
$$

The result follows since q_{1}, \ldots, q_{n} are n free variables.

ii

From part(1),

$$
\log \ell\left(p_{1}, \ldots, p_{n+1}\right)=\sum_{i=1}^{n}\left[\delta_{i} \log q_{i}+\left(n-i+1-\delta_{i}\right) \log 1-q_{i}\right]
$$

Then

$$
\frac{\partial \log \ell}{\partial q_{i}}=\frac{\delta_{i}}{q_{i}}-\frac{n-i+1-\delta_{i}}{1-q_{i}}=0, i=1, \ldots, n
$$

have the solution

$$
\hat{q}_{i}=\frac{\delta_{i}}{n-i+1}, i=1, \ldots, n
$$

Which maximizes $\ell\left(p_{1}, \ldots, p_{n+1}\right)$ since

$$
\frac{\partial^{2} \log \ell}{\partial q_{i}{ }^{2}}=-\frac{\delta_{i}}{q_{i}^{2}}-\frac{n-i+1-\delta_{i}}{\left(1-q_{i}\right)^{2}} \leq 0, \text { and } \frac{\partial^{2} \log \ell}{\partial q_{i} \partial q_{k}}=0
$$

for any i and $k \neq i$. Since

$$
\prod_{j=1}^{i}\left(1-q_{j}\right)=\frac{\sum_{k=2}^{n+1} p_{k}}{\sum_{k=1}^{n+1} p_{k}} \frac{\sum_{k=3}^{n+1} p_{k}}{\sum_{k=2}^{n+1} p_{k}} \cdots \frac{\sum_{k=i}^{n+1} p_{k}}{\sum_{k=i-1}^{n+1} p_{k}}=\sum_{k=i}^{n+1} p_{k}
$$

we obtain that

$$
q_{i} \prod_{j=1}^{i}\left(1-q_{j}\right)=p_{i}, i=1, \ldots, n
$$

Hence, by (i), $\ell\left(p_{1}, \ldots, p_{n+1}\right)$ is maximized by

$$
\hat{p}_{i}=\hat{q}_{i} \prod_{j=1}^{i}\left(1-\hat{q}_{j}\right)=\frac{\delta_{i}}{n-i+1} \prod_{j=1}^{i}\left(1-\frac{\delta_{j}}{n-j+1}\right), i=1, \ldots, n
$$

and $\hat{p}_{n+1}=1-\sum_{i=1}^{n} \hat{p}_{i}$

iii

Define $x_{0}=0$ and $x_{n+1}=\infty$. Let $t \in\left(x_{i}, x_{i+1}\right]$,
$i=0,1, \ldots, n$. Then

$$
\prod_{x_{i} \leq t}\left(1-\frac{\delta_{i}}{n-i+1}\right)=\prod_{j=1}^{i}\left(1-\hat{q}_{j}\right)=\frac{\hat{p}_{i}}{\hat{q}_{i}}=1-\sum_{j=1}^{i-1} \hat{p}_{j}
$$

Hence,

$$
\sum_{i=1}^{n+1} \hat{p}_{i} I_{(0, t]}\left(x_{i}\right)=1-\prod_{x_{i} \leq t}\left(1-\frac{\delta_{i}}{n-i+1}\right)
$$

iv

When $\delta_{i}=1$ for all i,

$$
\begin{gathered}
\hat{p}_{i}=\frac{1}{n-i+1} \prod_{j=1}^{i-1} \frac{n-j}{n-j+1} \\
=\frac{1}{n-i+1} \frac{n-1}{n} \frac{n-2}{n-1} \ldots \frac{n-i+1}{n-i+2}=\frac{1}{n}
\end{gathered}
$$

Problem 3

(\# 5.20)

Suppose that ξ satisfies $\ell(\theta, \xi)=\sup _{\xi} \ell(\theta, \xi)$ for any θ. Then the profile likelihood function is $\ell_{P}(\theta)=\ell(\theta, \hat{\xi})$. If $\hat{\theta}$ satisfies $\ell_{P}(\hat{\theta})=\sup _{\theta} \ell_{P}(\theta)$, then $\ell(\hat{\theta}, \hat{\xi})=\ell_{P}(\hat{\theta}) \geq \ell_{P}(\theta)=\ell(\theta, \hat{\xi}) \geq \ell(\theta, \xi)$ for any θ and ξ. Hence, $(\hat{\theta}, \hat{\xi})$ is an MLE.

\# 5.21)

The likelihood function is

$$
\ell\left(\mu, \sigma^{2}\right)=(2 \pi)^{-n / 2}\left(\sigma^{2}\right)^{-n / 2} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right)
$$

For fixed $\sigma^{2}, \ell\left(\mu, \sigma^{2}\right) \leq \ell\left(\bar{X}, \sigma^{2}\right)$, since $\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} \geq \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$. Hence the maximum does not depend on σ^{2} and the profile likelihood function is

$$
\ell \bar{X}, \sigma^{2}=(2 \pi)^{-n / 2}\left(\sigma^{2}\right)^{-n / 2} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right)
$$

By the result in the previous exercise, the profile MLE of σ^{2} is the same as the MLE of σ^{2}. This can also be shown by directly verifying that $\ell\left(\bar{X}, \sigma^{2}\right)$ is maximized at $\hat{\sigma}^{2}=n^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$. For fixed $\mu, \ell\left(\mu, \sigma^{2}\right)$ is maximized at $\sigma^{2}(\mu)=n^{-1} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}$. Then the profile likelihood function is

$$
(2 \pi)^{-n / 2} e^{-n / 2}\left[\frac{n}{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}\right]^{n / 2} .
$$

Since $\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} \geq \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}, \ell\left(\mu, \sigma^{2}(\mu)\right)$ is maximized at \bar{X}.

Problem 4 \# 5.23)

i

If $\pi(x) \equiv \pi$, then X_{i} and δ_{i} are independent. Hence, $F_{1}(x)=P\left(X_{i} \leq x \mid \delta_{i}=1\right)=P\left(X_{i} \leq x\right)=$ $F(x)$ for any x. If $F_{1}(x)=F(x)$ for any x , then $P\left(X_{i} \leq x, \delta_{i}=1\right)=P\left(X_{i} \leq x\right) P\left(\delta_{i}=1\right)$ for any x and, hence X_{i} and δ_{i} are independent. Thus, $\pi(x) \equiv \pi$.

ii

Note that

$$
\hat{F}(x)=\frac{\sum_{i=1}^{n} \delta_{i} I_{(-\infty, x]}\left(X_{i}\right)}{\sum_{i=1}^{n} \delta_{i}}
$$

Since $E\left[\delta_{i} I_{(-\infty, x]}\left(X_{i}\right) \mid \delta_{i}\right]=\delta_{i} F_{1}(x)$, we obtain that

$$
\begin{aligned}
& E[F \hat{(x)}]=E\left[E\left[\hat{F}(x) \mid \delta_{1}, \ldots, \delta_{n}\right]\right] \\
& =E\left[\frac{\sum_{i=1}^{n} E\left[\delta_{i} I_{(-\infty, x]}\left(X_{i}\right) \mid \delta_{i}\right]}{\sum_{i=1}^{n} \delta_{i}}\right] \\
& \quad=E\left[\frac{\sum_{i=1}^{n} \delta_{i} F_{1}(x)}{\sum_{i=1}^{n} \delta_{i}}\right]=F_{1}(x)
\end{aligned}
$$

. From the law of large numbers,

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{i} I_{(-\infty, x]}\left(X_{i}\right) \rightarrow_{p} E\left[\delta_{1} I_{(-\infty, x]}\left(X_{1}\right)\right]=E\left[\delta_{1} F_{1}(x)\right]=\pi F_{1}(x)
$$

and

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{i} \rightarrow_{p} E\left(\delta_{1}\right)=\pi
$$

Hence, $\hat{F}(x) \rightarrow_{p} F_{1}(x)$

iii

When $\pi(x)=\pi, F(x)=F_{1}(x)$. Hence, $\hat{F}(x)$ is unbiased and consistent for $F(x)$. When $\pi(x)$ is not constant, $F(x) \neq F_{1}(x)$ for some x. Since $\hat{F}(x)$ is unbiased and consistent for $F_{1}(x)$, it is biased and inconsistent for $F(x)$ for x at which $F(x) \neq F_{1}(x)$.

