5062 Homework 1 Solution

February 13, 2018

1 Problem 1

1.1

Let $T=\sum_{i=1}^{n} X_{i}$ and $A=n I_{k}+\Sigma_{0}^{-1}$. The product of the density of X and the prior density is

$$
\begin{gathered}
C_{X} \exp \left\{-\frac{\|T-n \theta\|^{2}}{2}-\frac{\left(\theta-\mu_{0}\right)^{\tau} \Sigma_{0}^{-1}\left(\theta-\mu_{0}\right)}{2}\right\} \\
=D_{X} \exp \left\{-\frac{\left[\theta-A^{-1}\left(\Sigma_{0}^{-1} \mu_{0}+T\right)\right]^{\tau} A\left[\theta-A^{-1}\left(\Sigma_{0}^{-1} \mu_{0}+T\right)\right]}{2}\right\},
\end{gathered}
$$

where C_{X} and D_{X} are quantities depending on X but not θ. Thus the posterior distribution of θ given X is $N_{k}\left(A^{-1}\left(\Sigma_{0}^{-1} \mu_{0}+T\right), A^{-1}\right)$. Since the posterior is a normal distribution,

$$
E(\theta \mid X)=\left(\Sigma_{0}^{-1} \mu_{0}+T\right) A^{-1}
$$

and

$$
\operatorname{Var}(\theta \mid X)=A^{-1}
$$

where $T=\sum_{i=1}^{n} X_{i}$ and $A=n I_{k}+\Sigma_{0}^{-1}$.

1.2

Let $T=\sum_{i=1}^{n} X_{i}$. The product of the density of X and the prior density is

$$
C_{X} \theta^{T+\alpha-1}(1-\theta)^{n k-T+\beta-1}
$$

where C_{X} does not depend on θ. Thus, the posterior distribution of θ given X is beta distribution with parameter $(T+\alpha, n k-T+\beta)$ and

$$
\begin{gathered}
E(\theta \mid X)=\frac{T+\alpha}{n k+\alpha+\beta} \\
\operatorname{Var}(\theta \mid X)=\frac{(T+\alpha)(n k-T+\beta)}{(n k+\alpha+\beta)^{2}(n k+\alpha+\beta+1)},
\end{gathered}
$$

where $T=\sum_{i=1}^{n} X_{i}$.

1.3

Let $X_{(n)}$ be the largest order statistics. The product of the density of X and the prior density is

$$
\theta^{-n} I_{(0, \theta)}\left(X_{(n)}\right) b a^{b} \theta^{-(b+1)} I_{(a, \infty)}(\theta)=\theta^{-(n+b+1)} I_{\left(\max X_{(n), a}, \infty\right)}(\theta) .
$$

Thus the posterior distribution of θ given X has the same form as the prior with a replaced by $\max \left\{X_{(n)}, a\right\}$ and b replaced by $b+n$. After direct calculation,

$$
E(\theta \mid X)=\frac{\max \left\{X_{(n)}, a\right\}(b+n)}{(b+n-1)}
$$

and

$$
\operatorname{Var}(\theta \mid X)=\frac{\max \left\{X_{(n)}^{2}, a^{2}\right\}(b+n)}{(b+n-1)^{2}(b+n-2)} .
$$

1.4

Let $T=\sum_{i=1}^{n} X_{i}$. The product of the density of X and the prior density is

$$
C_{X} \theta^{-(n+\alpha+1)} \exp \left\{-\left(T+\gamma^{-1}\right) / \theta\right\},
$$

where C_{X} does not depend on θ. Thus the posterior distribution of θ given X is the inverse gamma distriution with shape parameter $n+\alpha$ and scale parameter $\left(T+\gamma^{-1}\right)$. Then

$$
E(\theta \mid X)=\frac{T+\gamma^{-1}}{\alpha+n-1}
$$

and

$$
\operatorname{Var}(\theta \mid X)=\frac{\left(T+\gamma^{-1}\right)^{2}}{(n+\alpha-1)(n+\alpha-2)} .
$$

1.5

Let $T=\sum_{i=1}^{n} X_{i}$. The product of the density of X and the prior density is

$$
C_{X} \exp \left\{\theta\left(\frac{1}{b}+n\right) I_{(-\infty, a)}(\theta) I_{(\theta, \infty)}\left(X_{(1)}\right)\right\},
$$

where C_{X} does not depend on X. The posterior of θ given X has the same distribution as the prior with a replaced by $\min \left\{X_{(1)}, a\right\}$ and b replaced by $\frac{b}{1+n b}$. A direct calculation shows that

$$
\begin{gathered}
\left.E(\theta \mid X)=\min \left(a, X_{(1)}\right)-\frac{b}{n b+1}\right) \\
\operatorname{Var}(\theta \mid X)=\frac{b^{2}}{(n b+1)^{2}} .
\end{gathered}
$$

2 Problem 2

2.1

Note that \bar{X} has distribution $N\left(\theta, \frac{\sigma^{2}}{n}\right)$. The product of the density of \bar{X} and $\pi(\theta)$ is

$$
\frac{\sqrt{n}}{\sqrt{2 \pi} \sigma} e^{\frac{-n(x-\theta)^{2}}{2 \sigma^{2}}} \pi(\theta) .
$$

Hence,

$$
p(x)=\int \frac{\sqrt{n}}{\sqrt{2 \pi} \sigma} e^{\frac{-n(x-\theta)^{2}}{2 \sigma^{2}}} \pi(\theta) d v
$$

and

$$
p^{\prime}(x)=\frac{n}{\sigma^{2}} \int \frac{\sqrt{n}}{\sqrt{2 \pi} \sigma}(\theta-x) e^{\frac{-n(x-\theta)^{2}}{2 \sigma^{2}}} \pi(\theta) d v .
$$

Then, the posterior mean is

$$
\begin{gathered}
\delta(x)=\frac{1}{p(x)} \int \frac{\sqrt{n}}{\sqrt{2 \pi} \sigma} \theta e^{\frac{-n(x-\theta)^{2}}{2 \sigma^{2}}} \pi(\theta) d v \\
=x+\frac{1}{p(x)} \int \frac{\sqrt{n}}{\sqrt{2 \pi} \sigma}(\theta-x) e^{\frac{-n(x-\theta)^{2}}{2 \sigma^{2}}} \pi(\theta) d v \\
=x+\frac{\sigma^{2}}{n} \frac{p^{\prime}(x)}{p(x)} \\
=x+\frac{\sigma^{2}}{n} \frac{d \log (p(x))}{d x}
\end{gathered}
$$

2.2

From the result in 2.1,

$$
p^{\prime \prime}(x)=\frac{n^{2}}{\sigma^{4}} \int \frac{\sqrt{n}}{\sqrt{2 \pi} \sigma}(\theta-x)^{2} e^{\frac{-n(x-\theta)^{2}}{2 \sigma^{2}}} \pi(\theta) d v-\frac{\sigma^{2}}{n}
$$

and therefore,

$$
\begin{gathered}
\operatorname{Var}(\theta \mid \bar{X}=x)=E\left[(\theta-x)^{2} \mid \bar{X}=x\right]-[E(\theta-x \mid \bar{X}=x)]^{2} \\
=\frac{\sigma^{4}}{n^{2}} \frac{p^{\prime \prime}(x)}{p(x)}+\frac{\sigma^{2}}{n}-\left[\frac{\sigma^{2}}{n} \frac{p^{\prime}(x)}{p(x)}\right]^{2} \\
=\frac{\sigma^{4}}{n^{2}} \frac{d^{2} \log (p(x))}{d x^{2}}+\frac{\sigma 2}{n}
\end{gathered}
$$

2.3

If the prior is $N\left(\mu_{0}, \sigma_{0}^{2}\right)$, then the joint distribution of Θ and \bar{X} is normal and, hence, the marginal distribution of \bar{X} is normal. The mean of \bar{X} condition on θ is θ. Hence the marginal mean of \bar{X} is μ_{0}. The variance of \bar{X} condition on θ is $\frac{\sigma^{2}}{n}$. Hence the marginal variance of \bar{X} is $\sigma_{0}^{2}+\frac{\sigma^{2}}{n}$. Thus, $\mathrm{p}(\mathrm{x})$ is the density of $N\left(\mu_{0}, \sigma_{0}^{2}+\frac{\sigma^{2}}{n}\right)$ if the prior is $N\left(\mu_{0}, \sigma_{0}^{2}\right)$. If the prior is a point mass at μ_{1}, then

$$
p(x)=\frac{\sqrt{n}}{\sqrt{2 \pi} \sigma} e^{\frac{-n\left(x-\mu_{1}\right)^{2}}{2 \sigma^{2}}},
$$

which is the density of $N\left(\mu_{1}, \frac{\sigma^{2}}{n}\right)$. Therefore, $\mathrm{P}(\mathrm{x})$ is the density of the misture distribution ($1-$ $\epsilon) N\left(\mu_{0}, \sigma_{0}^{2}+\frac{\sigma^{2}}{n}\right)+\epsilon N\left(\mu_{1}, \frac{\sigma^{2}}{n}\right)$. Then

$$
p^{\prime}(x)=\frac{(1-\epsilon)\left(\mu_{0}-x\right)}{\sigma_{0}^{2}+\frac{\sigma^{2}}{n}} \phi\left(\frac{x-\mu_{0}}{\sqrt{\sigma_{0}^{2}+\frac{\sigma^{2}}{n}}}\right)+\frac{\epsilon\left(\mu_{1}-x\right)}{\frac{\sigma^{2}}{n}} \phi\left(\frac{x-\mu_{1}}{\sqrt{\frac{\sigma^{2}}{n}}}\right),
$$

where $\phi(x)$ is the standard normal density and $\delta(x)$ can be obtained by the formula in 2.1.

3 Problem 3

3.1

The posterior density $\pi\left(\mu, \sigma^{2} \mid x\right)$ is proportional to

$$
\sigma^{-(n+2)} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \exp \left\{-\frac{(\mu-\bar{x})^{2}}{\frac{\sigma^{2}}{n}}\right\} I_{(0, \infty)}\left(\sigma^{2}\right),\right.
$$

which is proportional to $\pi_{1}\left(\mu \mid \sigma^{2}, x\right) \pi_{2}\left(\sigma^{2} \mid x\right)$.

3.2

The marginal posterior density of μ is

$$
\begin{aligned}
\pi(\mu \mid x)=\int_{0}^{\infty} \pi\left(\mu, \sigma^{2} \mid x\right) d \sigma^{2} & \propto \int_{0}^{\infty} \sigma^{-(n+2)} \exp \left\{-\frac{n(\bar{x}-\mu)^{2}}{2 \sigma^{2}}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right\} d \sigma^{2} \\
& \propto\left[1+\frac{1}{n-1}\left(\frac{\mu-\bar{x}}{\tau}\right)^{2}\right]^{-\frac{n}{2}}
\end{aligned}
$$

Hence, $\pi(\mu \mid x)$ is $f\left(\frac{\mu-\bar{x}}{\tau}\right)$ with f being the density of student t distribution t_{n-1}.

3.3

The generalized Bayes action is

$$
\begin{gathered}
\delta=\int \frac{\mu}{\sigma} \pi_{1}\left(\mu \mid \sigma^{2}, x\right) \pi_{2}\left(\sigma^{2} \mid x\right) d \mu d \sigma^{2} \\
=\bar{x} \int \sigma^{-1} \pi_{2}\left(\sigma^{2} \mid x\right) d \sigma^{2} \\
=\frac{\Gamma(n / 2) \bar{x}}{\Gamma((n-1) / 2) \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / 2}}
\end{gathered}
$$

4 Problem 4

4.1

Let weighted function be $W(p)=p^{-1}(1-p)^{-1}$, then $f(x \mid p)=\prod_{i=1}^{n} p^{x_{i}}(1-p)^{1-x_{i}}=p^{\sum x_{i}}(1-$ $p)^{n-\sum x_{i}}$.
$\delta^{*}(x)=\frac{\int_{0}^{1} p f(x \mid p) w(p) d p}{\int_{0}^{1} f(x \mid p) w(p) d p}=\frac{\int_{0}^{1} p^{\sum x_{i}}(1-p)^{n-\sum x_{i}-1} d p}{\int_{0}^{1} p^{\sum x_{i}-1}(1-p)^{n-\sum x_{i}-1} d p}=\frac{B\left(\sum x_{i}+1, n-\sum x_{i}\right)}{B\left(\sum x_{i}, n-\sum x_{i}\right)}=\frac{\sum x_{i}}{n}=\bar{x}$

4.2

The discrete probability density of X is $(1-p)^{x-1} p$. Hence, for estimating p with $\operatorname{loss}(p-a)^{2} / p$, the Bayes action when $\mathrm{X}=\mathrm{x}$ is

$$
\delta(x)=\frac{\int_{0}^{1} p^{-1} p(1-p)^{x-1} p d \Pi}{\int_{0}^{1} p^{-1}(1-p)^{x-1} p d \Pi}=1-\frac{\int_{0}^{1}(1-p)^{x} d \Pi}{\int_{0}^{1}(1-p)^{x-1} d \Pi} .
$$

Consider the prior with Lebesgue density $\frac{\Gamma(2 \alpha)}{\Gamma \Gamma(\alpha)]^{2}} p^{\alpha-1}(1-p)^{\alpha-1} I_{(0,1)(p)}$. The Bayes action is

$$
\delta(x)=1-\frac{\int_{0}^{1}(1-p)^{x+\alpha-1} p^{\alpha-1} d p}{\int_{0}^{1}(1-p)^{x+\alpha-2} p^{\alpha-1} d p}=1-\frac{\frac{\Gamma(x+2 \alpha-1}{\Gamma(x+\alpha-1) \Gamma(\alpha)}}{\frac{\Gamma(x+2 \alpha)}{\Gamma(x+\alpha) \Gamma(\alpha)}}=1-\frac{x+\alpha-1}{x+2 \alpha-1}
$$

Since $\lim _{\alpha \Rightarrow 0} \delta(x)=\frac{1}{2} I_{1}(x)=\delta_{0}(x), \delta_{0}(x)$ is a limit of Bayes actions. Consider the improper prior density $\frac{d \Pi}{d p}=\left[p^{2}(1-p)\right]^{-1}$. Then the posterior risk for action a is

$$
\int_{0}^{1}(p-a)^{2}(1-p)^{x-2} p^{-2} d p .
$$

When $x=1$, the above integral diverges to infinity and, therefore, any a is a Bayes action. When $x>1$, the above integral converges if and only if $a=0$. Hence δ_{0} is a Bayes action.

