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11 Maximum Likihood Estimation (MLE)

MLE is one of the few statistical estimation methods which are independent of loss function.
Because it is not derived from loss function, MLE is often inadmissible. And MLE might
be biased. But the derivation of MLE is very intuitive, and asymptotic behavior of MLE
is appealing (under some regularity conditions), hence the method of likelihood function is
one of the most widely used statistical inference tools.

Motivating example:

Assume we observe a random variable from Bernoulli distribution with p = 0.2 or p = 0.9.

If the observed value is X = 0, it is more plausible that it comes from Ber(0.2) than Ber(0.9)
since P (X = 0; p = 0.2) = 0.8 > P (X = 0; p = 0.9) = 0.1.

This idea can be extended to discrete distributions Pθ : θ ∈ Θ ⊂ Rk. If X = x is observed,
θ1 is more plausible than θ2, iff

P (X = x; θ1) > P (X = x; θ2).

Then we can estimate θ by maximizing P (X = x; θ) over θ ∈ Θ, if such an maximizer exists.

More generally, considering P (X = x; θ) as p.d.f with respect to counting measure, we may
extend the idea to continuous distributions and compare p.d.f, f(x; θ), by changing the
dominating measure to Lebesgue measure.

Definition

1. Likelihood function: a function of θ, L(θ;x) = f(x; θ), where f(x; θ) is the joint density
of observing X = x given θ.

2. MLE: the estimator of θ, θ̂ = arg maxθ∈Θ L(θ;x).

Remarks:

1. In many cases, we observe a collection of realizations of iid random variables, Xi
iid∼

f(x; θ), i = 1, · · · , n. Then L(θ;x) =
∏n

i=1 f(xi; θ).

2. Sometimes, θ̂ may not exist in Θ but exists in Θ̄, the closure of the parameter space.
In the textbook, the MLE is defined in Θ̄. Furthermore, even exists, θ̂ may not be unique.
(Example: U(θ − 1/2, θ + 1/2).)

3. If θ̂ is the MLE for θ, the g(θ̂) is the MLE for g(θ), where g is a measurable function from
Θ to Rp, p ≤ k.
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11.1 Derivation of MLE

Note logorithm is a monotone increasing function. Let l(θ;x) = logL(θ;x). Then

θ̂ = arg max
θ∈Θ

L(θ;x) = arg max
θ∈Θ

l(θ;x) = arg max
θ∈Θ

n∑
i=1

log f(xi; θ).

This is very helpful for distributions in exponential families. A common way to find MLE is
by solving likelihood equation,

∂l(θ)

∂θ
= 0.

Examples:

1. Binomial. Xi
iid∼ Berp, p ∈ (0, 1), i = 1, · · · , n. p̂ = X̄. Check the second derivative.

Check the boundary x̄ = 0 and x̄ = 1.

2. Exponential family. Xi
iid∼ f(x; η), which follows a natural exponential family of full

rank with natural parameter η ∈ E ∈ Rp. The p.d.f. is

f(xi; η) = h∗(xi) exp{ηTT (xi)− A(η)},

and so the likelihood function is

L(η) ∝ exp{ηT
∑
i

T (xi)− nA(η)}.

Hence the likelihood equation is equivalent to

∂A(η)

∂η
=

n∑
i=1

T (Xi)/n.

Recall: in exponential families with natural parameter η being an interior point of the natural
parameter space, we have derived

E(T (X)) =
∂A(η)

∂η
, V ar(T (X)) =

∂2A(η)

∂η2
> 0.

Since ∂2l(η)
∂η2

= −∂2A(η)
∂η2

< 0, the solution of the likelihood equation,

η̂ =
(∂A(η)

∂η

)−1
(
n∑
i=1

T (Xi)/n),

is the unique MLE. Furthermore, if µ = E(X) = µ(η), then the MLE for µ is µ̂ = µ−1(η̂).
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3. Normal. More specifically, consider Xi
iid∼ N(µ, σ2), µ ∈ R, σ2 > 0, i = 1, · · · , n. Then

η = (
µ

σ2
,− 1

2σ2
), T (Xi) = (xi, x

2
i ), A(η) =

1

2

[
− η2

1

2η2

− log(−η2)

]
.

So the likelihood equation is:{
∂A(η)
∂η1

= −1
2
η1
η2

=
∑

i xi/n
∂A(η)
∂η2

= 1
2
[− η21

2η22
+ 1

η2
] =

∑
i x

2
i /n.

Note that L is bounded, E is open, and L→ 0 as ‖η‖ → ∞. So L is uniquely maximized at
the solution of above equations. Hence the MLE for η isη̂1 = x̄

1
n

∑
i(xi−x̄)2

η̂2 = −1
2

1
1
n

∑
i(xi−x̄)2

and for parameterization µ, σ2, the MLE is{
µ̂ = x̄

σ̂2 = 1
n

∑
i(xi − x̄)2.

3. Direct Maximization: Sometimes the likelihood function is not a continuous function
of parameter. In this case, the direct maximization (without using derivative) works better.

Let Xi
iid∼ U(0, θ). Then

L(θ) = θ−n1(x(n) ≤ θ),

∴ θ̂ = x(n).

4. Non-unique MLE: Xi
iid∼ U(θ − 1

2
, θ + 1

2
). Then

L(θ) = 1(x(n) ≤ θ +
1

2
)1(x(1) ≥ θ − 1

2
) = 1(x(n) −

1

2
θ ≤ x(1) +

1

2
),

and any estimator satisfying x(n) − 1
2
≤ θ̂ ≤ x(1) + 1

2
can be MLE.

5. Non-analytical MLE: In applications, one often cannot find the analytical form of MLE
and need to evaluate it numerically.

Let X1, · · · , Xn
iid∼ Gamma(α, γ), then θ = (α, γ)

l(θ) = −nα log γ − n log Γ(α) + (α− 1)
∑

log xi −
1

γ

∑
xi,

and the likelihood equation becomes{
0 = −n log γ − nΓ′(α)

Γ(α)
+
∑

log xi

0 = −nα
γ

+ 1
γ2

∑
xi ⇔ γ = x̄/α

Using the solution to the second one γ = x̄/α, we have

logα− Γ′(α)

Γ(α)
+

1

n

∑
log xi − log x̄ = 0,

which has no explicit solution, but can be proved to have a unique solution (MLE).
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11.2 MLE for Missing Data and EM Algorithm

Let X = (X1, · · · , Xn), Y = (Y1, · · · , Yn) be covariates and repsponse variables. Denote
f(Y |X; θ) as the joint pdf of Y given X, where θ is the parameter of the (regression) model.
Then without missing data, the likelihood function of θ is

L(θ; y|x) = f(y|x; θ).

If missing some Yi, what is the likelihood function for θ? Let Y = (Yo, Ym), where Yo is
the observed data and Ym is the missing data. Furthermore, denote A = (A1, · · · , An) as the
set of indicators of observing Y , where Ai = 1 if Yi ∈ Yo and 0 otherwise. Let f(A|Y,X;φ)
be the density of A given Y and X, where φ is the unknown parameter for missing scheme.

Missing Completely At Random (MCAR)
We say Y is missing completely at random (MCAR) if

f(A|Y,X;φ) = f(A|Yo, Ym, X;φ) = f(A|X;φ).

Missing At Random (MAR)
We say Y is missing at random (MAR) if

f(A|Y,X;φ) = f(A|Yo, Ym, X;φ) = f(A|Yo, X;φ).

Then the likelihood function with MAR is

L(θ, φ;Yo, A,X) = f(Yo, A|X; θ, φ)

=

∫
f(Yo, Ym, A|X; θ, φ)dYm

=

∫
f(A|Yo, Ym, X;φ)f(Yo, Ym|X; θ)dYm

= f(A|Yo, X;φ)

∫
f(Yo, Ym|X; θ)dYm ( MAR )

= f(A|Yo, X;φ)f(Yo|X; θ)

∫
(Ym|X; θ)dYm ( iid )

= f(A|Yo, X;φ)f(Yo|X; θ)

Hence the MLE for θ is θ̂ = arg maxθ f(Yo|X; θ), which is samse as the MLE ignoring missing
data, Ym.

So far, we only consider univariate case. If Yi is a vector, one may not miss Yi completely,
but only partially. Let’s start with p = 2, and Yi = (Yi1, Yi2). Assume missing second
components of the last few Yi,

Yo = ((Y11, Y12)T , · · · , (Yn21, Yn22)T ), Ym = (Y(n2+1)2, · · · , Yn2).
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Then the likelihood function with MAR is

L(θ, φ;Yo, A,X) = f(A|Yo, X;φ)f(A|Yo, X;φ)f(Yo|X; θ)

∫
(Ym|X; θ)dYm

= f(A|Yo, X;φ)

n2∏
i=1

f(Yi1, Yi2|X; θ)

∫ n∏
i=n2+1

(Yi1, Yi2|X; θ)dYi2

= f(A|Yo, X;φ)

n2∏
i=1

f(Yi1, Yi2|X; θ)
n∏

i=n2+1

(Yi1|X; θ∗),

where θ∗ in the last term may only depend on part of θ or is a function of θ. To reparame-
terize, we replace f(Yi1, Yi2|X; θ) by f(Yi1|X; θ∗)f(Yi2|Yi1, X;ϕ), then

L(θ, φ;Yo, A,X) = f(A|Yo, X;φ)
n∏
i=1

(Yi1|X; θ∗)

n2∏
i=1

f(Yi2|Yi1, X;ϕ).

where θ and (θ∗, ϕ) is 1-1.

Example: Bivariate Normal
For simplicity, let’s assume no covariates X. Let Yi = (Yi1, Yi2)T be iid bivariate normal
random variables with mean (µ1, µ2), variance (σ2

1, σ
2
2) and correlation ρ.

Let θ = (µ1, µ2, σ
2
1, σ

2
2, ρ). Note the marginal distribution of Yi1 is

Yi1 ∼ N(µ1, σ
2
1),

and the conditional distribution of Yi2 given Yi1 is

Yi2|Yi1 ∼ N

(
µ2 +

ρσ2

σ1

(Yi1 − µ1), σ2
2(1− ρ2)

)
.

Hence θ∗ = (µ1, σ
2
1) and ϕ = (α, β, τ 2), where

α = µ2 −
ρσ2

σ1

µ1, β =
ρσ2

σ1

, τ 2 = σ2
2(1− ρ2).

Then the likelihood function is L(θ, φ) =

f(A|Yo;φ)

[
1

(2πσ2
1)n/2

exp

{
− 1

2σ2
1

n∑
i=1

(Yi1 − µ1)2

}][
1

(2πτ 2
1 )n2/2

exp

{
− 1

2τ 2

n2∑
i=1

(Yi2 − α− βYi1)2

}]
So, letting Y·1 =

∑n
i=1 Yi1/n, Ỹ·1 =

∑n2

i=1 Yi1/n2, and Y·2 =
∑n2

i=1 Yi2/n2, we have

µ̂1 = Y·1, σ̂2
1 =

n∑
i=1

(Yi1 − Y·1)2/n

and

β̂ =

∑n2

i=1(Yi2 − Y·2)(Yi1 − Ỹ·1)∑n2

i=1(Yi1 − Ỹ·1)2
, α̂ = Y·2 − β̂Ỹ·1, τ̂ 2 =

n2∑
i=1

(Yi2 − α̂− β̂Yi1)2/n2.

Re-parameterize back to µ2, σ2
2 and ρ, we have the MLE for θ.

Compare it with the MLE without missing data. (For example, µ̂2 = Y·2 + β̂(µ1 − Ỹ·1). )

5



Math 5062 Spring 2018 Jimin Ding

In general, we may consider monotone missing data, which is the most common type of
missing in longitudinal data/panel data. Let Yi = (Yi1, · · · , Yim)T . For the t-th component
of Yi, suppose that {Y1t, · · · , Yntt} are observed and {Y(nt=1)t, · · · , Ynt} are missing, and
n ≥ n1 ≥ n2 ≥ · · · ≥ nm ≥ 2. Then the likelihood function is

L(θ, φ;Yo, A,X) = f(A|Yo, X;φ)
m∏
t=1

nt∏
i=1

f(Yit|Yi1, · · · , Yi(t−1), X; θ∗t ),

where (θ∗1, · · · , θ∗m) is a 1-1 function of θ. The MLE for θ then can be obtained iteratively
by first finding the MLE of θ∗t in the linear regression with Yit and (X, Yi1, · · · , Yi(t−1)), and
then deriving from (θ∗1, · · · , θ∗m).
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If missing is not monotone, the maximization can be very difficulty or impossible. The
EM algorithm can be used to partially solve the problem (see Little and Rubin, 2002).

The EM algorithm contains two steps: Expectation step and Maximization step, and
iterations between two steps. Let L(θ;Yo, Ym, X) be the likelihood function using the com-
plete data, Yo and Ym, referred to as the complete likelihood. Let θ(k) be the estimate of
θ at the (k)-th iteration of the EM algorithm. The E step at the k-th iteration calculates
the conditional expectation of the complete likelihood given observed data and parameter
estimation in the previous iteration,

Q(θ|θ(k−1)) = Eθ(k−1) [logL(θ;Yo, Ym, X)] =

∫
logL(θ;Yo, Ym, X)f(Ym|Yo, X; θ(k−1))dYm.

The M-step at the k-th iteration maximize above conditional expectation and find θ(k) s.t.

Q(θ(k)|θ(k−1)) = max
θ
Q(θ|θ(k−1)).

Now we show why the EM-algorithm works. Note

logL(θ;Yo, X) =

∫
[logL(θ;Yo, X)] f(Ym|Yo, X; θ)dYm

=

∫ [
log

f(Yo, Ym|X; θ)

f(Ym|Yo, X; θ)

]
f(Ym|Yo, X; θ)dYm

=

∫
[log f(Yo, Ym|X; θ)] f(Ym|Yo, X; θ)dYm −

∫
[log f(Ym|Yo, X; θ)] f(Ym|Yo, X; θ)dYm

= Q(θ|θ)−H(θ|θ),

whereH(θ1|θ) =
∫

[log f(Ym|Yo, X; θ1)] f(Ym|Yo, X; θ)dYm, andH(θ1|θ) ≤ H(θ|θ) by Jensen’s
inequality. Hence at the k-th iteration,

logL(θ(k);Yo, X)− logL(θ(k−1);Yo, X)

=Q(θ(k)|θ(k−1))−H(θ(k)|θ(k−1))−Q(θ(k−1)|θ(k−1)) +H(θ(k−1)|θ(k−1))

≥Q(θ(k)|θ(k−1))−Q(θ(k−1)|θ(k−1))

≥0

with equality holds iff Q(θ(k)|θ(k−1)) − Q(θ(k−1)|θ(k−1)). This means the change from θ(k−1)

to θ(k) increases likelihood. Hence EM algorithm produces a sequence of θ(k), k = 1, 2, · · ·
Under certain conditions, this sequence converges and the limit is considered as the EM
estimator of θ.

11.3 Related Reading

1. Sh Chapter 4.4,
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