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1 Lecture 1: Decision Theory Framework

Goals of statistic analysis: estimation, prediction, testing hypothesis, ranking. Examples
on page 16 of Bickel and Docksum (2001). These examples motivate the decision theoretic
framework: we need to

1. clarify the objectives of a study,

2. point to what the different possible actions are,

3. provide assessments of risk, accuracy, and reliability of statistical procedures,

4. provide guidance in the choice of procedures for analyzing outcomes of experiments.

We begin with a statistical model with observations X whose distribution Pθ ∈ P . Now
we define the four components of the decision theory framework.

Action space: the space of actions or decisions or claims that we can contemplate making,
often denoted by A.

Examples:

1. Estimation: A = R
2. Testing: A = 0, 1

3. Ranking: A = {permutations (i1, · · · , ik) of (1, · · · , k)}
4. Prediction: Here A is usually much larger. If the response variable Y is real, and the
covariate X ∈ X , then A = {a : a is a function from X to R} with a(x) representing the
prediction we would make if the new unobserved Y had covariate value x.

Loss function: a function that quantifies the loss for a given target and an action.

L : P × A→ R+.
Examples: (In parametric models, P can be indexed by θ, θ ∈ Θ)

L(θ, a) = (g(θ)− a)2 Square/quadratic loss function.

L(θ, a) = |g(θ)− a| Absolute loss function.

L(θ, a) = min{(g(θ)− a)2, d2} Truncated quadratic loss function.

L(θ, a) = 1, if |g(θ)− a| > d, 0 otherwise. Confidence interval loss function.

L(θ, a) = 1(g(θ) < a), Asymmetric loss function.

For A ∈ Rk, k > 1:

L(θ, a) = 1
k

∑
j(gj(θ)− aj)2 Squared Euclidean distance.

L(θ, a) = 1
k

∑
j |gj(θ)− aj| Absolute distance

L(θ, a) = max{|gj(θ)− aj|, j = 1, · · · , k} Supremum distance
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Decision procedures: any function from the sample space taking its values in A, often
denoted by δ. If data X = x is observed, the statistican takes action δ(x).
Question: How to choose an “optimal” decision/action/procedure?

Risk function: the average loss of the sample space. If δ action is used, L is the loss
function, θ is the true value of the parameter, and X = x is the outcome of the experiment.
Then L(θ, δ(x)) depends on the particular outcome of the experiment. We may want to
evaluate the properties of the action more based on overall or averaged loss.

R(θ, δ) = E[L(θ, δ(X))],

where the expectation is w.r.t X and may involve unknown parameter θ.
Example: The risk function defined by squared error loss function: MSE=Bias2+Variance.

The optimal action will be the action that minimizes the risk function. However, the risk
function depends on the unknown parameter θ, and it is usually very hard to find an action
that uniformaly minimizes the risk function. One way to solve the problem is to restrict
our attention to “unbiased” actions and then find the action uniformaly minimizes the risk
function among the unbiased actions. For example, UMVUE. Another way is to aggregate
the risk function over all possible values of θ ∈ Θ with some weight function Π(θ) and then
minimizes the aggregated risk. That is,

r(Π, δ) =

∫
Θ

R(θ, δ)dΠ,

where Π is a known probability measure that gives the weight of θ. This r(Π, δ) is called
the Bayes risk, and the optimal action that minimizes the Bayes risk is called Bayes ac-
tion/rule, denoted by δ∗. A third method is to consider the worst situation, i.e. supθ∈ΘR(θ, δ).
The resulting action that minimizes supθ∈ΘR(θ, δ) is called the minimax rule.

Examples: Normal-Normal model
Let X = (X1, · · · , Xn)T . Assume

X1, · · · , Xn|µ
iid∼ N(µ, σ2),

with a known σ2 and
µ ∼ N(µ0, σ

2
0).

Here µ0 and σ2
0 are hyperparameters. Then given the observed data,

µ|X = x ∼ N(µ∗(x), c2),

where

µ∗(x) = wµ0 + (1− w)x̄, c2 = wσ2
0, w =

σ2

nσ2
0 + σ2

.
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If we consider squared error loss function and estimation of g(θ) = µ, then

r(Π, δ) =

∫
Θ

R(θ, δ)dΠ = E
(
E{[µ− δ(X)]2|µ}

)
= E

(
[µ− δ(X)]2

)
.

The problem of minimizing the Bayes risk can be hence viewed as the prediction of µ using
X. The best predictor is E(µ|X). So the Bayes decision is

δ∗(x) = arg min
δ∈A

r(Π, δ) = E(µ|X = x),

where the expectation is w.r.t the conditional distribution of µ given X = x. In this case,
δ∗(x) is the Bayes estimator of µ.

Now let’s find the minimax rule in this example. For any decision rule δ,

sup
θ∈Θ

R(θ, δ) ≥
∫

Θ

R(θ, δ)dΠ ≥ r(Π, δ∗) = E
(
[µ− δ∗(X)]2

)
= E{E

(
[µ− δ∗(X)]2|X

)
} = E(c2) = c2.

Since this result is true for any σ2
0 > 0, let σ2

0 →∞,

sup
θ∈Θ

R(θ, δ) ≥ σ2/n = sup
θ∈Θ

R(θ, X̄).

Hence X̄ is the minimax estimator of µ.

Related Reading

1. Sh P113-116

2. BD chapter 1.2-1.3
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2 Lecture 2: Bayesian Model and Estimation

Key: view model parameter θ as a realization of a random variable from some prior distri-
bution Π. Two important distributions:

• Prior distribution: based on history/prior information/subjective belief. Π(θ, ξ), where
ξ are hyperparameters which might be further modeled in a hierarchical model.

• Posterior distribution: conditional distribution of the model parameters given observed
data. P (θ|X).

Theorem 2.1 (Bayes Formula). Assume P = {P (x|θ) : θ ∈ Θ} is dominated by a σ-finite

measure µ with pdf f(x|θ) = dP (x|θ)
dµ

. Let Π be a prior distribution on Θ. Then the marginal

pdf of X w.r.t. µ is m(x) =
∫

Θ
f(x|θ)dΠ. Suppose m(x) > 0. Then

1. The posterior P (θ|x)� Π with pdf dP (θ|X)
dΠ

= f(x|θ)
m(x)

.

2. If Π� λ with pdf dΠ
dλ

= π(θ), where λ is a σ-finite measure, then the posterior P (θ|x)�
λ with pdf dP (θ|x)

dλ
= f(x|θ)π(θ)

m(x)
.

Proof. Use Fubini’s theorem. Detail see page 232 Shao (2003)

If both X and θ are discrete and µ and λ are the counting measures, then above theorem
becomes the Bayes formula in elementary statistics:

P (θ = i|X = j) =
P (X = j|θ = i)P (θ = i)∑
i P (X = j|θ = i)P (θ = i)

.

Bayes risk:

r(Π, δ) =

∫
Θ

R(θ, δ)dΠ(θ), where R(θ, δ) = E(L(θ, δ)).

Bayes rule:
δ∗(x) = arg min

δ∈A
r(Π, δ) = arg min

δ∈A
E(L(θ, δ(x))|X = x),

where the expectation is w.r.t. P (θ|x). We call δ∗ the Bayes estimator, if the action is an
estimation.

Theorem 2.2 (Existence and Uniqueness of Bayes Estimator). Assume the condi-
tions in the previous theorem hold. Assume L(θ, a) is convex in a for each given x ∈ X and
E(L(θ, δ(x))|X = x) < ∞ for some δ (there exists an estimator with finite risk.) Further-
more, assume A is compact or L(θ, a)→ +∞ as ‖a‖ → +∞ uniformaly in θ. Then

1. Bayes estimator
δ∗ = arg min

δ∈A
E(L(θ, δ(x))|X = x)

exists.
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2. If L is strictly convex, then δ∗ is unique.

Proof. See page 228 in Lehmann and Casella (1998).

Examples:

1. L(θ, a) = [g(θ)− a]2, then

δ∗(x) = E(g(θ)|X = x) =

∫
Θ
g(θ)f(x|θ)dΠ∫
Θ
f(x|θ)dΠ

2. L(θ, a) = w(θ)[g(θ)− a]2 with some known weight function w(θ), then

δ∗(x) =

∫
Θ
w(θ)g(θ)f(x|θ)dΠ∫
Θ
w(θ)f(x|θ)dΠ

3. L(θ, a) = |g(θ)− a|2, then δ∗(x) is any median of the posterior.

4. L(θ, a) = 1(|θ−a| > c) with some known constant c, then δ∗(x) is the interval I of length
2c which maximizes P (θ ∈ I|X = x).

Conjugate prior: the distributions of the posterior and prior belong to the same family.
Depends on both the prior and the model distribution. For example,

1. Normal-Normal model (midterm of math 5061)

2. Poisson-Gamma model (Ex.)

3. Multinomial-Dirichlet model (final of math 5061)

Improper prior: note that Bayes risk r(Π, δ) is well defined even if Π is not a probability
measure but a σ-finite measure. (Then m(x) may not be finite.)

• Π(Θ) = 1: proper prior

• Π(Θ) 6= 1: improper prior ⇒ δ∗ is referred to as a generalized Bayes estimator.
Noninformative prior is usually an improper prior.
The resulting generalized Bayes estimator is usally the limit of some Bayes estimators
from a proper prior.
Example 4.3 on page 236 Shao 2003.
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More Bayesian Models:

1. Normal-Gamma model. Let

Xi
iid∼ N(0, σ2), τ =

1

2σ2
∼ Gamma(α, ν).

(σ2 follows inverse Gamma distribution.) Then

τ |X ∼ Gamma(α∗, ν∗), α∗ = n/2 + α, ν∗ = (
∑

X2
i + ν−1)−1.

Under square loss, the Bayes esimator for σ2 = 1/(2τ 2) is

E[1/(2τ 2)|X] =
1

2
E[1/(τ 2)|X] =

1

2

1

(α∗ − 1)ν∗
=

∑
X2
i + ν−1

n/2− 1 + α
.

2. If we consider scale-invariant loss function

L(θ, a) = (
θ − a
θ

)2 = (
σ2 − a
σ2

)2,

then the Bayes estimator for σ2 is

E[w(θ)g(θ)]

E[w(θ)]
=
E[ 1

σ4σ
2]

E 1
σ4

=
E[τ ]

2E[τ 2]
=

∑
X2
i + ν−1

2α + n+ 2
, α∗ > 1

3. Normal-Gamma model with unknown mean and unknown variance. Let

Xi
iid∼ N(µ, σ2),

µ ∼ N(µ0, σ
/
0(2σ2))

τ =
1

2σ2
∼ Gamma(α, ν).

Consider θ = (µ, σ2). Posterior of θ|X is proportional to

τn/2 exp{−
∑

(xi − µ)2τ}(σ2
0τ)1/2 exp{−(µ− µ0)2τ/(2σ2

0)}τα−1 exp{−τ/ν}

⇒ µ|X, τ ∼ N(µ∗, c2), µ∗ =
nx̄+ µ0/(2σ

2
0)

n+ 1/(2σ2
0)

, c2 = [(2n+ σ0)2τ ]−1,

τ |X ∼ Gamma(α∗, ν∗), α∗ = n/2 + α, ν∗ = (
∑

X2
i + ν−1 − (n+

1

2σ2
0

)µ∗2)−1.

Hence Bayes estimator for θ under square loss is

µ̂ = µ∗, σ̂2 =
1

2(α∗ − 1)ν∗
, if α∗ > 1.

Note these are biased estimators.

4. ANOVA with hetergeneous variance. (Example 4.9 on page 244 in Shao (2003).)
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3 Lecture 3: More on Baysian Estimation

3.1 Empirical and Hierarchical Bayes Method for Priors

If hyperparameters, ξ, are estimated by historical or observed data, the resulting estimation
is called empirical Bayes estimation. If the hyperparameters are viewed as random
variables and modeled by a second-stage prior (hyper-prior), the resulting estimation is
called hierarchical Bayes estimation.

Examples: Normal-Normal Model

Let X1, · · · , Xn
iid∼ N(µ, σ2) with unknown µ ∈ R and a known σ2. Assume µ ∼ N(µ0, σ

2
0).

Empirical Bayes Estimation: the simplest empirical Bayes method is to view the observed
data as a “sample” from the marginal distribution P (x|ξ) =

∫
P (x|θ)dΠ(θ|ξ).

In this case, the pdf of X|ξ is

m(x|ξ) =

∫
R
(
√

2πσ2)−n/2 exp{−
∑

i(xi − µ)2

2σ2
}(
√

2πσ2
0)−n/2 exp{−

∑
i(µ− µ0)2

2σ2
0

}dµ,

where ξ = (µ0, σ
2
0). One can find the conditional expectation and variance of X|ξ without

calculating m(x|ξ):
E(X|ξ) = E[E(X|θ)|ξ] = E[µ|ξ] = µ0,

V ar(X|ξ) = V ar[E(X|θ)|ξ] + E[V ar(X|θ)|ξ] = V ar[µ|ξ] + E[σ2|ξ] = σ2
0 + σ2.

Then we may estimate prior parameters using the moment method

µ̂0 = x̄, σ̂2
0 =

1

n

∑
i

x2
i − x̄− σ2 =

1

n

∑
i

(xi − x̄)2 − σ2.

With respect to squared error loss function, the Bayes estimator for µ is hence the sample
mean x̄.

Hierarchical Bayes Estimation: instead of estimating hyperparameters, in hierarchical Bayes
approach we put a second-stage prior on hyperparameters, Λ(θ|ξ). If the second-stage prior
also depends on some unknown parameters, one may go on to consider a third-stage prior. In
most applications, however, two-stage priors are sufficient, since misspecifying a second-stage
prior is much less serious than misspecifying a first-stage prior. In addition, the second-stage
prior can be chosen to be noninformative. The hierarchical Bayes estimation is

δ(x) =

∫
δ(x, ξ)dP (ξ|x),

where δ(x, ξ) is the Bayes estimation when ξ is known.
In this case, we consider Λ(ξ) be the Lebesgue measure. From the previous example, we see

δ(x, ξ) =
σ2

nσ2
0 + σ2

ξ +
nσ2

0

nσ2
0 + σ2

x̄.
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Note the pdf of ξ|X is

f(ξ|x) =

∫
f(x|θ)f(θ|ξ)f(ξ)dθ∫ ∫
f(x|θ)f(θ|ξ)f(ξ)dθdx

∝
∫
f(x|θ)f(θ|ξ)f(ξ)dθ.

Hence, in this example,

f(ξ|x) ∝
∫
R

exp{−
∑

i(xi − µ)2

2σ2
− (µ− µ0)2

2σ2
0

}dµ

∝
∫
R

exp{−n(x̄− µ)2

2σ2
− (µ− µ0)2

2σ2
0

}dµ

=

∫
R

exp{−[aµ2 − 2bµ+ c]}dµ

∝ exp c− (2b/a)2,

where a = n/(2σ2) + 1/(2σ2
0),b = nx̄/σ2 + µ0/σ

2
0, and c = nx̄2/(2σ2) + µ2

0/(2σ
2
0). Hence

f(ξ|x) ∝ exp− n(ξ − x̄)2

2(nσ2
0 + σ2)

.

So ξ|x follows normal distribution with mean x̄. We may estimate

µ̂0 = x̄.

The hierarchical generalized Bayes rule is then x̄.

3.2 Properties on Bayesian Estiamtors

Biasness of Bayes estimators Theorem. Let δ(X) be a Bayes estimator of g(θ) under
squared error loss. Then δ(X) is biased unless the Bayes risk r(Π, δ) = 0, i.e. E[(g(θ) −
δ(X))2] = 0, where E is w.r.t both X and θ.

Proof. If δ(X) is unbiased, then E[δ(X)|θ] = g(θ), ∀θ. Then

E[δ(X)g(θ)] = E[E(δ(X)g(θ)|θ)] = E[g2(θ)],

E[δ(X)g(θ)] = E[E(δ(X)g(θ)|X)] = E[δ2(X)].

∴ E[(g(θ)− δ(X))2] = E[g2(θ)] + E[δ2(X)]− 2E[δ(X)g(θ)] = 0.

Examples: Sample mean is usually not Bayes estimator.

1.Normal-Noraml model.
Bias= σ2

nσ2
0+σ2 (µ0 − µ), which is not 0. For large n, the bias is the order of 1/n.
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2.Bin-Beta model.
Let Xi

iid∼ Ber(p), p ∼ Beta(a, b). Then p|X ∼ Beta(a∗, b∗), where

a∗ = a+ x̄, b∗ = b+ n(1− X̄).

Here V ar(X̄) = p(1 − p)/n, which is not a constant as above, but depends on the mean p.
But for p ∈ (0, 1), p(1− p) > 0,⇒ r(Π, X̄) =

∫
p(1− p)/ndΠ > 0 unless Π only have point

mass on 0 and/or 1. Hence X̄ cannot be Bayes estimator.

3.Sample mean in general.

Let Xi
iid∼ E(Xi) = θ, V ar(Xi) = σ2, which is independent of θ. Note that

R(θ, X̄) = V ar(X̄) = σ2/n 6= 0.

Then r(Π, X̄) 6= 0 w.r.t. any prior Π, hence X̄ cannot be Bayes estimator.

3.3 Related Reading

1. Sh P231-245

2. LC chapter 4
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