6 Lecture 6: Invariant Estimation under Group Transformations

6.1 Invariant Problem under a Transformation

Let g be a bijection (1-1 and onto) of a sample space \mathcal{X} ; Let \mathcal{P} be a family of distributions on \mathcal{X} , then

Definition 1: Invariance Model under a transformation. \mathcal{P} is invariant to g if

$$X \sim P \in \mathcal{P}, \Rightarrow gX \sim P^* \in \mathcal{P}$$

and

$$\forall P^* \in \mathcal{P}, \exists P \text{ s.t. } X \sim P \rightarrow gX \sim P^*$$

The second condition ensures that g does not reduce the model.

Example: Normal with unknown variance under scale transformation. Let g(x) = 2x, and

$$\mathcal{P}_A = \{ \mathcal{N}(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0 \}$$
$$\mathcal{P}_B = \{ \mathcal{N}(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 1 \}$$

Then \mathcal{P}_A is invariant to g but \mathcal{P}_B is not, as g reduces \mathcal{P}_B .

Induced Transformation: Let $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ be a model that is invariant under g. When $X \sim P_{\theta}, \theta \in \Theta$, then $\exists \theta^* \in \Theta s.t.gX \sim P_{\theta^*}$. Define \bar{g} to be the transformation on the parameter space:

$$\bar{g}: \quad \Theta \to \Theta$$
$$\theta \mapsto \theta^*.$$

The function \bar{g} is well-defined <u>iff</u> the model (parametrization) is identifiable. In other words, $\forall \theta_1 \neq \theta_2 \Rightarrow P_{\theta_1} \neq P_{\theta_2}$. In particular, the identifiability makes g a bijection:

Lemma 6.1. If $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is invariant under a bijection (one-to-one and onto) g, and the model is identifiable, then \overline{g} is a bijection.

Proof.

1. onto: That g is onto follows from the second condition in the definition of model invariance under a transformation $(\forall P^* \in \mathcal{P}, \exists P \text{ s.t. } X \sim P \rightarrow gX \sim P^*);$

2. 1-to-1: To show that g is 1-to-1, if $\forall \theta^*$ s.t. $\bar{g}\theta_1 = \bar{g}\theta_2 = \theta^*$, we want to show that $\theta_1 = \theta_2$. By the identifiability, we only need to show that $P_{\theta_1} = P_{\theta_2}$. Then $\forall A$ (measurable sets) $\in \sigma(\mathcal{X})$

$$P_{\theta_1}(X \in A) = P_{\theta^*}(gX \in gA) = P_{\theta_2}(X \in A),$$

since $\{X \in A\} \equiv \{gX \in gA\}$. Thus, $P_{\theta_1} = P_{\theta_2}$, and by the identifiability of the model, $\Rightarrow \theta_1 = \theta_2$. Example: Recall Normal with unknown variance under scale transformation. $\mathcal{P}_A = \{\mathcal{N}(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0\}, g(X) = a + bX, \bar{g}(\mu, \sigma^2) = (a + b\mu, b^2\sigma^2).$

 $\mathcal{P}_A = \{\mathcal{N}(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0\}, \ g(X) = a + bX, \ g(\mu, \sigma^2) = (a + b\mu, b^2)$ Here, $\Theta = \mathbb{R} \times \mathbb{R}^+, \ \bar{g}\Theta = \mathbb{R} \times \mathbb{R}^+.$

Definition 2: Invariant loss under a transformation. Let \mathcal{P} be invariant under g (so $\bar{g}\Theta = \Theta$). A loss function $L(\theta, a) : \Theta \times \mathbb{A} \to \mathbb{R}^+$ is invariant if

$$\forall a \in \mathbb{A}, \exists ! a^* \in \mathbb{A} \text{ s.t. } L(\theta, a) = L(\bar{g}\theta, a^*) \forall \theta \in \Theta$$

Induced Transformation: Denote $\tilde{g}a := a^*$, then \tilde{g} is a bijection on \mathbb{A} :

$$\tilde{g}: \quad \mathbb{A} \to \mathbb{A} \\ a \mapsto a^*.$$

 \tilde{g} is referred to as the induced transformation for decisions.

Examples: Normal under linear transformation.

 $\mathcal{P}_A = \{\mathcal{N}(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0\}$ $g(X) = c + bX, \bar{g}(\mu, \sigma^2) = (c + b\mu, b^2 \sigma^2)$ $\bar{g}(\mu, \sigma^2) = (c + b\mu, b^2 \sigma^2)$ 1. Squared error loss: $L_1(\theta, a) = (\mu - a)^2$.

$$\Rightarrow L_1(\bar{g}\theta, a^*) = (c + b\mu - a^*)^2.$$

If L_1 is invariant under g, then

$$\begin{split} L(\theta,a) &= L(\bar{g}\theta,a^*), \quad \forall \mu \in \mathbb{R}. \\ \Leftrightarrow (\mu-a)^2 &= (c+b\mu-a^*)^2, \quad \forall \mu \in \mathbb{R} \end{split}$$

However, in this case, this is not possible unless b = 1 since the solution of above equation $a^* = a + c + (b - 1)\mu$ depends on μ . Hence squared error loss is not invariant under g.

2. Scaled squared error loss: $L_2(\theta, a) = \frac{(\mu-a)^2}{\sigma^2}$ (standardized by the variance).

$$\Rightarrow L_2(\bar{g}\theta, a^*) = \frac{(c+b\mu-a^*)^2}{b^2\sigma^2} = (\mu - \frac{a^*-c}{b})^2/\sigma^2.$$

Setting $L(\theta, a) = L(\bar{g}\theta, a^*)$, then

$$\frac{a^* - c}{b} = a \quad \Rightarrow \quad a^* = c + ba,$$

So $\tilde{g}a = c + ba$ is the induced transformation for decisions, and L_2 is invariant under g.

Definition 3: Invariant decision problem. A decision problem (Θ, \mathbb{A}, L) is invariant under g if

- invariant parameter space under the induced transformation \bar{g} (definition 1)
- invariant loss function under the induced transformation \tilde{g} (definition 2)

6.2 Invariance Under a Group

Typically, if a problem in invariant under a transformation g, it is also invariant under a class of related transformations. We always take such a class to be a group.

Recall: a **Group** $\mathcal{G} = \{g : g \in \mathcal{G}\}$ is a class of transformations s.t.:

1.
$$\forall g_1, g_2 \in \mathcal{G}, g_1 \circ g_2 \in \mathcal{G}$$

2. $\forall g \in \mathcal{G}, g^{-1} \in \mathcal{G} \text{ and } g \circ g^{-1} = g^{-1} \circ g = I$

Examples:

- 1. Location shift: Additive group.
- 2. Scale transformations: multiplicative group.

3. Linear transformations. Let $\mathcal{X} = \mathbb{R}$ then $\mathcal{G} = \{g : g(x) = c + bx, c \in \mathbb{R}, b \in \mathbb{R} \{0\}\}$ is a group on \mathcal{X} .

Recall normal model under linear transformation.

 $\mathcal{P}_A = \{ \mathcal{N}(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0 \}$ $\mathcal{G} = \{ g : g(x) = c + bx, c \in \mathbb{R}, b \in \mathbb{R} \{ 0 \} \},$ $L(\theta, a) = (\mu - a)^2 / \sigma^2.$

For each single $g(x) = c + bx \in \mathcal{G}$, the induced transformations on Θ an \mathbb{A} are $\bar{g}(\mu, \sigma^2) = (c + b\mu, b^2\sigma^2)$ and $\tilde{g}a = c + ba$ respectively.

We have known this decision problem (Θ, \mathbb{A}, L) is invariant under each $g \in \mathcal{G}$. Therefore, it is invariant under the group \mathcal{G} . Now consider the class of \overline{g} and \widetilde{g} :

$$\bar{\mathcal{G}} = \{ \bar{g} : g \in \mathcal{G} \}, \tilde{\mathcal{G}} = \{ \tilde{g} : g \in \mathcal{G} \},$$

are referred to as Induced Groups.

Lemma 6.2. If $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is invariant under a group \mathcal{G} , then $\overline{\mathcal{G}} = \{\overline{g} : g \in \mathcal{G}\}$ and $\widetilde{\mathcal{G}} = \{\overline{g} : g \in \mathcal{G}\}$ are also groups.

Examples:

1. Scale transformation $\mathcal{P} = \{ E(0,\theta) : \theta \in \Theta = \mathbb{R} \}, f(x;\theta) = \frac{1}{\theta} e^{-\frac{x}{\theta}}$ $\mathcal{G} = \{ g : g(x) = cx, c \in \mathbb{R}^+ \}$ $L(\theta, a) = (1 - \frac{a}{\theta})^2 = \frac{(\theta - a)^2}{\theta^2}.$ Then

- Invariant model under \mathcal{G} (definition 1): for each $g \in \mathcal{G}$,
 - If $X \sim P_{\theta}, \theta \sim \Theta$, then $gX = X^* \sim P_{\theta^*}, \theta^* = c\theta$ - If $P_{\theta^*} \in \mathcal{P}, \forall \theta^* \in \Theta, \exists \theta \text{ s.t. } \theta^* = c\theta$
- Induced group on Θ : $\overline{\mathcal{G}} = \{\overline{g} : \overline{g}\theta = c\theta, c \in \mathbb{R}^+\}$

Math 5062 Spring 2018

- Invariant loss under \mathcal{G} (definition 2): $\forall g \in \mathcal{G}, L(\theta, a) = L(\bar{g}\theta, a^*).$
- Induced group on A:

$$L(\bar{g}\theta, a^*) = \frac{(c\theta - a^*)^2}{(c\theta)^2} = \frac{(c\theta - ca)^2}{(c\theta)^2}$$
$$= \frac{(\theta - a)^2}{\theta^2} = L(\theta, a)$$

 $\Rightarrow \tilde{g}a = ca$, then we have the group $\tilde{\mathcal{G}} = \{\tilde{g} : \tilde{g}a = ca, c \in \mathbb{R}^+\}.$

• Invariant decision problem under \mathcal{G} (definition 3).

Note that $\mathcal{G}, \overline{\mathcal{G}}$ and $\widetilde{\mathcal{G}}$ are all the same group (all scale transformations). But this is not always the case, shown as follows.

2. Location and scale transformation $\mathcal{P}_{A} = \{\mathcal{N}(\mu, \sigma^{2}) : \mu \in \mathbb{R}, \sigma^{2} > 0\}$ $g(X) = c + bX, \tilde{g}a = c + ba, \bar{g}(\mu, \sigma^{2}) = (c + b\mu, b^{2}\sigma^{2}) \Rightarrow \mathcal{G} = \tilde{\mathcal{G}} \neq \bar{\mathcal{G}}.$

6.3 Invariant Decision Rule

Invariant principles: $X \sim P \in \mathcal{P}, X^* \sim P_{\theta^*} \in \mathcal{P}, L(\theta, a) = L(g\theta, \tilde{g}a)$; a good decision rule δ to estimate θ using X

• Formal invariance:

$$\hat{\theta^*} = \overline{\widehat{g}} \theta \quad \Leftrightarrow \quad \delta(X^*) = \delta(gX)$$

• Functional invariance

$$\hat{\theta^*} = \tilde{g}\hat{\theta} \quad \Leftrightarrow \quad \delta(X^*) = \tilde{g}\delta(X)$$

Combining the above two types of invariance we have an invariant decision rule.

Definition 4: Invariant Decision Rule. For a decision problem invariant under a group \mathcal{G} , an estimator is invariant if

$$\delta(gX) = \tilde{g}(\delta(X)), \forall g \in \mathcal{G}$$

Theorem 6.3. The risk of an invariant estimation satisfies the following condition:

$$R(\theta, \delta) = R(\bar{g}\theta, \delta), \forall \theta \in \Theta, \bar{g} \in \mathcal{G}.$$

Proof.

$$R(\theta, \delta) = E_{\theta}[L(\theta, \delta(X))]$$

$$= E_{\theta}[L(\bar{g}\theta, \tilde{g}\delta(X))] \text{ (invariant loss function)}$$

$$= E_{\theta}[L(\bar{\theta}, \delta(gX))] \text{ (equivalence of } \delta : \delta(gX) = \tilde{g}\delta(X))$$

$$= E_{\theta^*}[L(\theta^*, \delta(X^*))]$$

$$= R(\theta^*, \delta)$$

$$= R(\bar{g}\theta, \delta)$$

Definition. Two points $\theta_0, \theta_1 \in \Theta$ are said to be equivalent if $\exists \bar{g} \ s.t. \ \bar{g}\theta_1 = \theta_2, \bar{g} \in \bar{\mathcal{G}}$. The set of all such equivalent points is called an orbit:

$$\Theta(\theta_0) = \{ \bar{g}(\theta_0) : \bar{g} \in \bar{\mathcal{G}} \}$$

If all points in Θ are equivalent (a single orbit defined by the group), then we say $\overline{\mathcal{G}}$ is **transitive**.

If \overline{G} is transitive, for any θ, θ_0 we can choose $\overline{g} \in \overline{G}$ such that $\overline{g}(\theta) = \theta_0$. Combined this and the previous theorem, we obtain the next Corollary.

Corollary 6.4. If \overline{G} is transitive, then the risk of all invariant estimators is constant over parameter space.

Theorem 6.5. MRIE is risk-unbiased if \overline{G} is transitive and \widetilde{G} is commutative.

Examples: The followings are examples of commutative and non-commutative groups \tilde{G} .

- 1. Location transformation \tilde{G} is commutative.
- 2. Scale transformation \tilde{G} is commutative.
- 3. Scale and location transformation \tilde{G} is not commutative.

Related Reading

- 1. Sh P256-267
- 2. LC chapter 3.1