Homework 1, Math 4111, due September 5

(1) Prove that for sets $A, B, C, A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
(2) If $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions and $g \circ f: A \rightarrow C$ is injective, prove that f is injective.
(3) Let $f: A \rightarrow A$ be a function such that $(f \circ f)(a)=a$ for all $a \in A$. Prove that f is bijective.
(4) For any $n \in \mathbb{N}$, let $\Sigma_{n}=\{m \in \mathbb{N} \mid m \leq n\}$. If $f: \Sigma_{n+1} \rightarrow \Sigma_{n}$ is any function, prove that f is not injective. (This is usually called the 'Pigeon Hole principle'.)
(5) If $x \geq 0$ is a real number and $n \in \mathbb{N}$, prove that $(1+x)^{n} \geq 1+n x$.
(6) Let $n \in \mathbb{N}$. Prove that there exists a rational number x with $x^{2}=n$ if and only if there is a natural number m with $m^{2}=n$.
(7) Prove that given any prime number, there is a larger prime.
(8) Let $a \in \mathbb{Z}$ with p not dividing a for a prime p. Prove that there is a natural number n such that $p \mid a^{n}-1$. (Hint: Look at remainders of $a^{n}-1$ when divided by p and use the Pigeon Hole principle.)

