Homework 10, Math 4111, due 14 Nov 2013

Do not submit problems in blue, but at least attempt them.
(1) Prove that \exp is differentiable at 0 and $\exp ^{\prime}(0)=1$.
(2) Assuming the above, prove that exp is differentiable everywhere and $\exp ^{\prime}(x)=\exp (x)$ for all $x \in \mathbb{R}$. In particular $\exp \in C^{\infty}(\mathbb{R})$. (Hint: $\exp (x+y)=\exp x \cdot \exp y$)
(3) Prove that for $x<0, \exp x<\sum_{k=0}^{2 n} \frac{x^{k}}{k!}$ for any integer $n \geq 0$.
(4) Let $f:(-1,1) \rightarrow \mathbb{R}$ be defined as $f(x)=\frac{1}{1-x}$. Prove that $f \in C^{\infty}(-1,1)$.
(5) Letting f as above, we get the Taylor approximation for any $x \in$ $(-1,1), f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(0) x^{k}}{k!}+\frac{f^{(n+1)}\left(x_{1}\right) x^{n+1}}{(n+1)!}$, with x_{1} between 0 and x. Calculate a possible value of x_{1} in terms of x, n.
(6) Let $f \in C^{1}([a, b])$ with $f(a)=f(b)=0$. Prove that for any real number $r \in \mathbb{R}$, the equation $f^{\prime}(x)=r f(x)$ has a solution in $[a, b]$.
(7) Let f be in $C^{n}([a, b])$ and assume that it has at least $n+1$ zeroes in $[a, b]$. Prove that $f^{(n)}$ has at least one zero in $[a, b]$.

