Homework 11, Math 4111, due 21 Nov 2013
(1) Let $f \in C^{\infty}([a, b])$ such that $\left|f^{(n)}(x)\right| \leq M$ for all $x \in[a, b]$ and for all $n \geq 0$. Prove that there exists polynomials P_{d} for $d \geq 0$ such that $\lim P_{d}=f$ in the sup norm.
(2) Let $f=x^{n}+1$. Calculate $V_{f}(a, b)$, the total variation for $a<b$. (Hint: There are several possibilities).
(3) Calculate $V_{f}(a, b)$ for any polynomial f, if you know the roots of f^{\prime}.
(4) Let $f:(a, b) \rightarrow \mathbb{R}$ be a function (where a may be $-\infty$ and/or b may be $+\infty$). We say that f is of bounded variation, if for any closed and bounded interval $[c, d] \subset(a, b), f$ is of bounded variation on $[c, d]$ and $V_{f}(c, d)$ for all possible choices of c, d are bounded above. As usual in this case, define $V_{f}(a, b)$ to be the supremum of $V_{f}(c, d)$ as $[c, d] \subset(a, b)$ varies. Most of the results we proved in class are true in this set up.

Prove that if f is of bounded variation in (a, b), then f is bounded. Similarly, if f, g are of bounded variation on (a, b), prove that so is $f+g$ and $V_{f+g}(a, b) \leq V_{f}(a, b)+V_{g}(a, b)$. (Imitate proofs done in class.)
(5) Let $f:[a, b] \rightarrow[c, d]$ be a non-decreasing function with $a<c<$ $d<b$. Prove that there exists an $x \in[a, b]$ with $f(x)=x$.
(6) Let f be defined on $[0,1]$ as follows. $f(0)=0$. If $0<x \leq 1$, there is a unique non-negative integer n such that $\frac{1}{2^{n+1}}<x \leq$ $\frac{1}{2^{n}}$. Define $f(x)=2^{-n}$. Prove that f is Riemann integrable.

