Homework 2, Math 4111, due September 12
(1) Let $x_{n}=\sum_{k=1}^{n} \frac{1}{k(k+1)}$. Prove that $\lim x_{n}=1$. (Hint: $\frac{1}{k(k+1)}=$ $\frac{1}{k}-\frac{1}{k+1}$.)
(2) Let $x_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}$. Prove that $\lim x_{n}$ exists. (Hint: The set $\left\{x_{n}\right\}$ is bounded above since $\frac{1}{k^{2}} \leq \frac{1}{k(k-1)}$ for $k \geq 2$ and the previous problem.)
(3) Assume $\lim x_{n}=a, \lim y_{n}=b$. Prove that $\lim x_{n}+y_{n}=a+b$ and $\lim x_{n} y_{n}=a b$. (Hint: $x_{n} y_{n}-a b=\left(x_{n}-a\right) y_{n}+a\left(y_{n}-b\right)$ and both $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are bounded.)
(4) Let $x_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Prove that the set $\left\{x_{n}\right\}$ is not bounded above. (Hint: $\sum_{k=2^{m}+1}^{2^{m+1}} \frac{1}{k} \geq \frac{1}{2}$.)
(5) Let $\lim x_{n}=a$ and let $\left\{y_{n}\right\}$ be the sequence, $y_{n}=\frac{\sum_{k=1}^{n} x_{k}}{n}$. Prove that $\lim y_{n}=a$.

