Homework 4, Math 4111, due September 26
(1) Prove that the following examples from class are indeed metric spaces. You only need to verify the triangle inequality.
(a) Let \mathcal{C} be the set of continuous functions from $[0,1] \rightarrow \mathbb{R}$ with the sup norm: $\|f\|=\sup _{x \in[0,1]}\{|f(x)|\}$. (You may use any fact that you have studied in Calculus.)
(b) \mathbb{Q} with the p-adic norm for a prime p. Let me recall it here. If $0 \neq r \in \mathbb{Q}$, we can write it as $p^{n}(a / b)$ with a, b non-zero integers relatively prime to p and a unique integer n which we call $v_{p}(r)$, the valuation of r. Define $\|r\|=0$ if $r=0$ and $=p^{-v_{p}(r)}$ if $r \neq 0$.
(c) The space ℓ^{2} of all sequences $\left\{x_{n}\right\}$ where $x_{n} \in \mathbb{R}$ with $\sum_{n=1}^{\infty} x_{n}^{2}<\infty$ with the norm $\left\|\left\{x_{n}\right\}\right\|=\sqrt{\sum x_{n}^{2}}$. (Remember that the sum above just means that $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} x_{k}^{2}$ exists and this limit is the 'infinite' sum). First prove that if $\left\{x_{n}\right\},\left\{y_{n}\right\} \in \ell^{2}$ then so is $\left\{x_{n}+y_{n}\right\}$ and thus the metric $d\left(\left\{x_{n}\right\},\left\{y_{n}\right\}\right)=\left\|\left\{x_{n}-y_{n}\right\}\right\|$ is well defined and then it is indeed a metric.
(2) Let d, d^{\prime} be two metrics on a set M. We say they are equivalent if a subset $U \subset M$ is open with respect to the d-metric if and only if it is open with respect to the the d^{\prime}-metric.
(a) Prove that d, d^{\prime} are equivalent if and only if for any $a \in$ $M, r>0$, there exists an $s>0$ such that $B_{d^{\prime}}(a, s) \subset$ $B_{d}(a, r)$ (open balls of radius s, r with center a in the $d^{\prime}, d-$ metric respectively) and conversely, given $r^{\prime}>0$ there exists $s^{\prime}>0$ such that $B_{d}\left(a, s^{\prime}\right) \subset B_{d^{\prime}}\left(a, r^{\prime}\right)$.
(b) Prove that if d is a metric and A is a positive real number, then $d^{\prime}=A d$ defined as $d^{\prime}(a, b)=A d(a, b)$ is also a metric and equivalent to d.
(c) Prove that, if d is a metric, then d^{\prime} defined as,

$$
d^{\prime}(a, b)=\frac{d(a, b)}{1+d(a, b)}
$$

is also a metric and equivalent to d. (This is often called the bounded metric associated to d. Note that $d^{\prime}(a, b) \leq 1$ for all a, b.)
(d) Define for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}, d(\mathbf{x}, \mathbf{y})=$ $\left|x_{1}-y_{1}\right|+\cdots+\left|x_{n}-y_{n}\right|$. Decide whether this is a metric and if so, whether it is equivalent to the Euclidean metric.
(3) Let $f:(M, d) \rightarrow\left(N, d^{\prime}\right)$ be a function. Prove that the following statements are equivalent.
(a) $f^{-1}(U)$ is open for any $U \subset N$ open.
(b) $f^{-1}(Z)$ is closed for any $Z \subset N$ closed.
(c) Let $f(a)=b$. For any $r>0$, there exists $s>0$ such that $f\left(B_{d}(a, s)\right) \subset B_{d^{\prime}}(b, r)$.
(d) For any subset $S \subset M$ and a an adherent point of $S, f(a)$ is an adherent point of $f(S)$.

