Homework 5, Math 4111, due October 3

Do not submit problems in blue, but at least do them.
(1) Prove that the only subsets of \mathbb{R}^{n} which are both open and closed are \mathbb{R}^{n} and the empty set. (Hint: If X is another such a set, pick $\mathbf{a} \in X, \mathbf{b} \notin X$ and consider $\sup \{t \in[0,1] \mid \mathbf{a}+t(\mathbf{b}-\mathbf{a}) \in$ $X\}$. In other words, imitate what we did in class.)
(2) Let (M, d) be a metric space. If S, T are subsets of M, define $d(S, T)=\inf \{d(s, t) \mid s \in S, t \in T\}$, which makes sense, since this set is bounded below by zero. If $S=\{a\}$, a singleton set, we will write $d(a, T)$ instead of $d(\{a\}, T)$.
(a) Prove that if S is a closed subset and $a \in M$, then $d(a, S)=$ 0 if and only if $a \in S$.
(b) If S is compact and T is closed with $S \cap T=\emptyset$, prove that $d(S, T)>0$.
(c) Give an example of two closed subsets S, T of \mathbf{R}^{2} with $S \cap T=\emptyset$, but $d(S, T)=0$.
(d) Prove that every closed subset of M is the intersection of countably many open sets.
(3) Prove that a collection of disjoint open sets in \mathbb{R}^{n} is necessarily countable. Give an example of a collection of disjoint closed sets which is not countable.
(4) If X, Y are connected subsets of a metric space and $X \cap Y \neq \emptyset$, prove that $X \cup Y$ is connected.
(5) If S is a subset of \mathbb{R}^{n} such that for every point $\mathbf{x} \in S$ has an open neighbourhood $B(\mathbf{x}, r)(r>0$ may depend on $\mathbf{x})$ which intersects S in a countable set, prove that S is countable.
(6) We say that a subset S of \mathbb{R}^{n} is convex, if for any two points $\mathbf{a}, \mathbf{b} \in S$ and for any $t \in[0,1], t \mathbf{a}+(1-t) \mathbf{b} \in S$.
(a) Prove that any open ball in \mathbb{R}^{n} is convex.
(b) Prove that if S is convex, so is its closure. (Remember that the closure of S is its union with all its accumulation points.)
(c) For a set S we define the interior of S, denoted by int S to be $\{\mathbf{x} \in S \mid B(\mathbf{x}, r) \subset S\}$ (again, $r>0$ may depend on \mathbf{x}). Prove that if S is convex, so is int S. (Hint: If U, V are open in \mathbb{R}^{n}, so is $U+V$ defined as $\{\mathbf{u}+\mathbf{v} \mid \mathbf{u} \in U, \mathbf{v} \in V\}$.)

