Homework 5, Math 4111, due October 3

Do not submit problems in blue, but at least do them.

- (1) Prove that the only subsets of \mathbb{R}^n which are both open and closed are \mathbb{R}^n and the empty set. (Hint: If X is another such a set, pick $\mathbf{a} \in X$, $\mathbf{b} \notin X$ and consider $\sup\{t \in [0, 1] | \mathbf{a} + t(\mathbf{b} \mathbf{a}) \in X\}$. In other words, imitate what we did in class.)
- (2) Let (M, d) be a metric space. If S, T are subsets of M, define $d(S,T) = \inf\{d(s,t)|s \in S, t \in T\}$, which makes sense, since this set is bounded below by zero. If $S = \{a\}$, a singleton set, we will write d(a, T) instead of $d(\{a\}, T)$.
 - (a) Prove that if S is a closed subset and $a \in M$, then d(a, S) = 0 if and only if $a \in S$.
 - (b) If S is compact and T is closed with $S \cap T = \emptyset$, prove that d(S,T) > 0.
 - (c) Give an example of two closed subsets S, T of \mathbb{R}^2 with $S \cap T = \emptyset$, but d(S, T) = 0.
 - (d) Prove that every closed subset of M is the intersection of countably many open sets.
- (3) Prove that a collection of disjoint open sets in \mathbb{R}^n is necessarily countable. Give an example of a collection of disjoint closed sets which is not countable.
- (4) If X, Y are connected subsets of a metric space and $X \cap Y \neq \emptyset$, prove that $X \cup Y$ is connected.
- (5) If S is a subset of \mathbb{R}^n such that for every point $\mathbf{x} \in S$ has an open neighbourhood $B(\mathbf{x}, r)$ (r > 0 may depend on \mathbf{x}) which intersects S in a countable set, prove that S is countable.
- (6) We say that a subset S of \mathbb{R}^n is *convex*, if for any two points $\mathbf{a}, \mathbf{b} \in S$ and for any $t \in [0, 1]$, $t\mathbf{a} + (1 t)\mathbf{b} \in S$.
 - (a) Prove that any open ball in \mathbb{R}^n is convex.
 - (b) Prove that if S is convex, so is its closure. (Remember that the closure of S is its union with all its accumulation points.)
 - (c) For a set S we define the *interior* of S, denoted by int S to be $\{\mathbf{x} \in S | B(\mathbf{x}, r) \subset S\}$ (again, r > 0 may depend on \mathbf{x}). Prove that if S is convex, so is int S. (Hint: If U, V are open in \mathbb{R}^n , so is U + V defined as $\{\mathbf{u} + \mathbf{v} | \mathbf{u} \in U, \mathbf{v} \in V\}$.)