Homework 6, Math 4111, due October 10
Do not submit problems in blue, but at least attempt them.
(1) Prove that any continuous map from \mathbb{R} to \mathbb{Q} (with the usual metrics) is constant.
(2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and assume that it is continuous at a point $p \in \mathbb{R}$. Does that mean there is a small interval $(p-r, p+r)(r>0)$ where f is continuous?
(3) Prove that the function $f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}-\{0\}$ give by $f(x)=$ x^{-1} is continuous. Deduce that if $g: M \rightarrow \mathbb{R}$ is a continuous function (M, as usual a metric space) with $g(x) \neq 0$ for all $x \in M$, then the function $h: M \rightarrow \mathbb{R}$ given by $h(x)=\frac{1}{g(x)}$ is continuous.
(4) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with the property $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Prove that there exists an $a \in \mathbb{R}$ such that $f(x)=a x$ for all $x \in \mathbb{R}$. (Hint: What is a ? What is $f(x / n)$ for $n \in \mathbb{N}, x \in \mathbb{R}$?)
(5) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given as $f(x, y)=\frac{x y^{2}}{x^{2}+y^{4}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$. Show that f is not continuous at $(0,0)$. Decide whether the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $g(x, y)=\frac{x^{2} y^{2}}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and $g(0,0)=0$ is continuous at $(0,0)$.
(6) Let $S \subset \mathbb{R}^{3}$ consist of the three unit line segments starting from the origin along the three axes. Algebraically,

$$
S=\{(x, 0,0) \mid x \in[0,1]\} \cup\{(0, y, 0) \mid y \in[0,1]\} \cup\{(0,0, z) \mid z \in[0,1]\}
$$

If $f: S \rightarrow \mathbb{R}$ is any continuous function, show that there exists $a \neq b$ in S such that $f(a)=f(b)$.
(7) (a) Let \mathcal{B} be the set of bounded functions from $[0,1] \rightarrow \mathbb{R}$ with the sup norm $\|f\|=\sup _{x \in[0,1]}|f(x)|$. So, the metric $d(f, g)=\|f-g\|$ also makes sense, since $f-g \in \mathcal{B}$ if $f, g \in \mathcal{B}$. Prove that \mathcal{B} is complete with respect to this metric. (Hint: Prove that for any $\mathrm{CS}\left\{f_{n}\right\} \in \mathcal{B}$ and any $x \in[0,1],\left\{f_{n}(x)\right\}$ is a CS.)
(b) Prove that \mathcal{C}, the set of continuous functions on $[0,1]$ is a subset of \mathcal{B}. Deduce that \mathcal{C} is complete.

