Homework 6, Math 4111, due October 10

Do not submit problems in blue, but at least attempt them.

- (1) Prove that any continuous map from \mathbb{R} to \mathbb{Q} (with the usual metrics) is constant.
- (2) Let $f : \mathbb{R} \to \mathbb{R}$ be a function and assume that it is continuous at a point $p \in \mathbb{R}$. Does that mean there is a small interval (p-r, p+r) (r > 0) where f is continuous?
- (3) Prove that the function $f : \mathbb{R} \{0\} \to \mathbb{R} \{0\}$ give by $f(x) = x^{-1}$ is continuous. Deduce that if $g : M \to \mathbb{R}$ is a continuous function (M, as usual a metric space) with $g(x) \neq 0$ for all $x \in M$, then the function $h : M \to \mathbb{R}$ given by $h(x) = \frac{1}{g(x)}$ is continuous.
- (4) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function with the property f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Prove that there exists an $a \in \mathbb{R}$ such that f(x) = ax for all $x \in \mathbb{R}$. (Hint: What is a? What is f(x/n) for $n \in \mathbb{N}, x \in \mathbb{R}$?)
- (5) Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ given as $f(x,y) = \frac{xy^2}{x^2+y^4}$ if $(x,y) \neq (0,0)$ and f(0,0) = 0. Show that f is not continuous at (0,0). Decide whether the function $g : \mathbb{R}^2 \to \mathbb{R}$ given by $g(x,y) = \frac{x^2y^2}{x^2+y^2}$ if $(x,y) \neq (0,0)$ and g(0,0) = 0 is continuous at (0,0).
- (6) Let $S \subset \mathbb{R}^3$ consist of the three unit line segments starting from the origin along the three axes. Algebraically,

$$S = \{(x, 0, 0) | x \in [0, 1]\} \cup \{(0, y, 0) | y \in [0, 1]\} \cup \{(0, 0, z) | z \in [0, 1]\}.$$

If $f: S \to \mathbb{R}$ is any continuous function, show that there exists $a \neq b$ in S such that f(a) = f(b).

- (7) (a) Let \mathcal{B} be the set of bounded functions from $[0,1] \to \mathbb{R}$ with the sup norm $||f|| = \sup_{x \in [0,1]} |f(x)|$. So, the metric d(f,g) = ||f-g|| also makes sense, since $f - g \in \mathcal{B}$ if $f,g \in \mathcal{B}$. Prove that \mathcal{B} is complete with respect to this metric. (Hint: Prove that for any CS $\{f_n\} \in \mathcal{B}$ and any $x \in [0,1], \{f_n(x)\}$ is a CS.)
 - (b) Prove that C, the set of continuous functions on [0, 1] is a subset of \mathcal{B} . Deduce that C is complete.