Homework 7, Math 4111, due October 24

(1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous monotonic (increasing or decreasing) function. Prove that f is a homeomorphism to its image $f(\mathbb{R})$. (Recall that f is monotonic increasing if for any $x>y, f(x)>f(y)$.) You may prove this assuming increasing, since the decreasing case will be very similar.
(2) Decide whether the continuous functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{3}-3 x, g(x)=x^{3}+3 x$ are open or not. (Hint: For f, find local maximum or minimum, using calculus and see how these behave near there, but write the proof using only what we have done. For g use the previous problem.)
(3) Let $a, b \in \mathbb{R}$ be such that $a^{2}+b^{2}=1$ and let $t=\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$. Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=(a x+b y+$ $\left.t_{1},-b x+a y+t_{2}\right)$. Show that there exists a constant $c \in \mathbb{R}$ such that $\|f(p)-f(q)\| \leq c\|p-q\|$ for any $p, q \in \mathbb{R}^{2}$.
(4) Let $A \subset(M, d)$, a non-empty subset and define $f_{A}: M \rightarrow \mathbb{R}$ by $f_{A}(x)=d(x, A)$ (Recall that $d(x, A)=\inf \{d(x, a) \mid a \in A\}$.). Prove that f_{A} is uniformly continuous.
(5) Let A, B be two disjoint closed subsets of a metric space (M, d). Prove that there exists two disjoint open subsets U, V of M with $A \subset U, B \subset V$. (Hint: Use f_{A}, f_{B})
(6) Let $A, B \subset(M, d)$ be disjoint closed subsets and let $f: X=$ $A \cup B \rightarrow\left(N, d^{\prime}\right)$ be continuous and further assume that f is uniformly continuous on A, B separately. If A or B is compact, prove that f is uniformly continuous on X.

