Homework 8, Math 4111, due October 31

- (1) Let \mathcal{C} be the set of continuous functions on the closed interval [0,1] with sup norm. Define a function $\text{ev} : \mathcal{C} \to \mathbb{R}$ (usually called the evaluation map) by ev(f) = f(0) for any $f \in \mathcal{C}$. Prove that ev is uniformly continuous.
- (2) Let (M, d) be a compact metric space and let $\{U_{\alpha}\}$ be an open cover of M. Show that there exists a positive number δ (called the Lebesgue number for the covering) such that for any point $a \in M, B(a, \delta) \subset U_{\alpha}$ for some α .
- (3) Use the above to deduce the theorem proved in class: If f: $(M,d) \rightarrow (N,d')$ is continuous and M is compact, then f is uniformly continuous.
- (4) Define functions (polynomials) $P_n : \mathbb{R} \to \mathbb{R}$ by, $P_n(x) = \sum_{k=0}^n \frac{(-1)^k x^{2k}}{(2k)!}$ for non-negative integers n. You may quote results from class or previous homework if necessary.
 - (a) For any $a \in \mathbb{R}$, prove that $\lim P_n(a)$ exists. We call this $\cos a$, the cosine function.
 - (b) Prove that on any closed bounded interval, $\{P_n\}$ form a CS with respect to the sup norm. Deduce that cos is continuous.
- (5) For any a > 0, we can define (after what we did in class) a function $f_a : \mathbb{R} \to \mathbb{R}$ as $f_a(x) = \exp(x \log a)$ (in calculus, the familiar notation being a^x). Decide whether f_a is monotonic. (It is clearly continuous).
- (6) A function $f : \mathbb{R} \to \mathbb{R}$ (or an open set, closed set etc.) is said to satisfy *Lipschitz condition* of order $\alpha \in \mathbb{R}$ at $c \in \mathbb{R}$, if there is a positive constant M(c) and a $\delta > 0$ such that for all $x \in (c - \delta, c + \delta), |f(x) - f(c)| < M(c)|x - c|^{\alpha}$. Prove that if $\alpha > 0$, then f is continuous at c and if $\alpha > 1$, then f is differentiable at c.