Homework 9, Math 4111, due November 7

(1) Prove that the map $f:[0, \infty) \rightarrow[0, \infty)$ given by $f(x)=x^{n}$, $n \in \mathbb{N}$ is a homeomorphism. Denoting the inverse as $g(x)=$ $x^{\frac{1}{n}}$, prove that g is differentiable at every point in $(0, \infty)$ and calculate its derivative.
(2) Let $f:(a, b) \rightarrow(c, d)$ be a homeomorphism and assume that f is differentiable with finite non-zero derivatives at every point in (a, b). Then prove that the inverse $g:(c, d) \rightarrow(a, b)$ is differentiable at every point of (c, d).
(3) Recall the division algorithm for polynomials. If P, Q are polynomials, then there exists unique polynomials A, R such that $P=A Q+R$ and $\operatorname{deg} R<\operatorname{deg} Q$. Let $P(x)=x^{n}+a_{1} x^{n-1}+$ $\cdots+a_{n}$ be a polynomial.
(a) Prove that if $P(\alpha)=0$ for some $\alpha \in \mathbb{R}$, then $P=(x-\alpha) Q$ for some polynomial Q (of degree $n-1$).
(b) Prove that if we also had $P^{\prime}(\alpha)=0$, then $Q=(x-\alpha) S$ for some polynomial S.
(4) Let P be an even degree polynomial. Show that we can write P as $\sum c_{i} Q_{i}^{2}$ for some $c_{i} \in \mathbb{R}$ and Q_{i} polynomials. (The sum is finite). (Hint: Odd degree polynomials have a root).
(5) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $|f(a)-f(b)|<$ $M|a-b|^{2}$ for a fixed positive constant and all $a, b \in \mathbb{R}$. Prove that f is constant.
(6) Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function which has a finite derivative at all points of \mathbb{R}. Further assume that $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ is bounded. Prove that f is uniformly continuous on \mathbb{R}.
(7) Let $f:[a, b] \rightarrow[a, b]$ be a continuous function (from a closed bounded interval to itself) and assume that f is differentiable in (a, b) with $\left|f^{\prime}(c)\right|<1$ for all $c \in(a, b)$. Prove that there exists a unique $x \in[a, b]$ such that $f(x)=x$.

