Sample Problems

(1) Let $A, B \subset X$. Prove that $A \subset X-B$ if and only $B \subset X-A$.
(2) Prove that $\binom{n+1}{r}=\binom{n}{r}+\binom{n}{r-1}$. (Recall that $\binom{n}{r}$ is defined for integers $n \geq 0,0 \leq r \leq n$ as $\frac{n!}{r!(n-r)!}$, where $n!=1$ if $n=0$ and if $n>0, n!=1 \cdot 2 \cdots n)$.
(3) For any real numbers x, y and an integer $n \geq 0$, prove the binomial theorem, $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.
(4) If $m, n \in \mathbb{N}$, let $r(m, n)$ to be the remainder of m when divided by n. Prove that for any $a, m, n \in \mathbb{N}, r\left(a^{m}-1, a^{n}-1\right)=$ $a^{r(m, n)}-1$.
(5) Consider the set $\left\{\left.\frac{(a+1)^{2}}{a^{2}+1} \right\rvert\, a \in \mathbb{R}\right\}$. Decide whether this set is bounded above, below or both and if so find the supremum (resp. infimum) of this set.
(6) Let $\left\{x_{n}\right\}$ be a convergent sequence, $x_{n} \in(M, d)$ with $\lim x_{n}=a$. Let $\left\{y_{n}\right\}$ be a subsequence of $\left\{x_{n}\right\}$. (This means the following. The sequence $\left\{x_{n}\right\}$ is given by a function $f: \mathbb{N} \rightarrow M$ and $f(n)=x_{n}$. Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be any increasing function and if we define $y_{n}=f \circ g(n),\left\{y_{n}\right\}$ is called a subsequence of $\left\{x_{n}\right\}$). Prove that $\lim y_{n}=a$.
(7) Prove that if $\left\{x_{n}\right\}$ is a sequence of real numbers with $\lim x_{n}=$ $a \neq 0$, then the sequence $\left\{\left.\frac{1}{x_{n}} \right\rvert\, x_{n} \neq 0\right\}$ (why is this a sequence?) converges to $\frac{1}{a}$.
(8) Let M be a set with two metrics d_{1}, d_{2} such that $d_{1}(x, y) \leq$ $C d_{2}(x, y)$ for a fixed positive constant C and for all $x, y \in M$. Prove that an open set in the d_{1} metric is open in the d_{2} metric.
(9) Consider \mathbb{R}^{n} with the following three metrics (you do not have to check they are metrics). Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=$ $\left(y_{1}, \ldots, y_{n}\right)$ be two points of \mathbb{R}^{n}. 1) $d_{1}(\mathbf{x}, \mathbf{y})=\sup _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|$; 2) $d_{2}(\mathbf{x}, \mathbf{y})=\sqrt{\sum\left(x_{i}-y_{i}\right)^{2}}$; 3) $d_{3}(\mathbf{x}, \mathbf{y})=\sum\left|x_{i}-y_{i}\right|$. Prove that $d_{1}(\mathbf{x}, \mathbf{y}) \leq d_{2}(\mathbf{x}, \mathbf{y}) \leq d_{3}(\mathbf{x}, \mathbf{y})$ and $d_{2}(\mathbf{x}, \mathbf{y}) \leq \sqrt{n} d_{2}(\mathbf{x}, \mathbf{y}) \leq$ $d_{1}(\mathbf{x}, \mathbf{y})$.
(10) Prove that the function, $f:[0,1] \rightarrow[0,1]$ given by $f(x)=$ $\sqrt{1-x^{2}}$ is continuous.

