Math 417, Homework 4, due 5th October 2010

(1) Let \(\mathbb{Q} \) be given the \(p \)-adic topology for a prime \(p \) and let \(U_n \) for an integer \(n \) as usual be the open set, \(U_n = \{ r \in \mathbb{Q} | v_p(r) \geq n \} \).

(a) Show that if \(r, s \in U_n \) then so is \(r \pm s \). (That is \(U_n \) is a subgroup of \(\mathbb{Q} \) with respect to addition).

(b) Show that \(U_n \) is closed. (Again, this is true for any topological group-any open subgroup is closed).

(c) Let \(S = \{ 1, p, p^2, \ldots \} \subset \mathbb{Q} \). Find all limit points (if any) of \(S \) in \(\mathbb{Q} \).

(2) Let \(f : \mathbb{R} \to \mathbb{R} \) be a function. Show that it is continuous if and only if for any sequence \(\{ x_n \} \) with \(x_n \in \mathbb{R} \) and \(\lim x_n = x \), one has \(\lim f(x_n) = f(x) \).

(3) We say that a subspace \(A \subset X \) is dense in \(X \) if the closure of \(A \) is \(X \). Show that if \(f, g : X \to Y \), where \(Y \) is Hausdorff, are two continuous functions and \(f|_A = g|_A \) (restrictions of \(f \) and \(g \) to \(A \)) where \(A \) is dense in \(X \), then \(f = g \).

(4) As usual, we identify the set of \(2 \times 2 \) matrices \(M_2(\mathbb{R}) \) with \(\mathbb{R}^4 \) by the map, \(\phi : M_2(\mathbb{R}) \to \mathbb{R}^4 \),

\[
\phi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = (a, b, c, d).
\]

Show that this is a bijection (trivial). Thus, we may define a topology on \(M_2(\mathbb{R}) \) by declaring that a subset \(U \subset M_2(\mathbb{R}) \) is open if and only if \(\phi(U) \) is open in \(\mathbb{R}^4 \).

(a) Show that the map \(M_2(\mathbb{R}) \times M_2(\mathbb{R}) \to M_2(\mathbb{R}) \) given by matrix addition is continuous.

(b) Show that the map \(M_2(\mathbb{R}) \to \mathbb{R} \) given by \(A \mapsto \det A \) is continuous.