De Rham Cohomology

1. Definition of De Rham Cohomology

Let X be an open subset of the plane. If we denote by $C^0(X)$ the set of smooth (i.e., infinitely differentiable functions) on X and $C^1(X)$, the smooth 1-forms on X (i.e., expressions of the form $f \, dx + g \, dy$ where $f, g \in C^0(X)$), we have natural differentiation map $d : C^0(X) \to C^1(X)$ given by

$$f \mapsto \frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy,$$

usually denoted by df. The kernel for this map (i.e., set of f with $df = 0$) is called the zeroth De Rham Cohomology of X and denoted by $H^0(X)$. It is clear that these are precisely the set of locally constant functions on X and it is a vector space over \mathbb{R}, whose dimension is precisely the number of connected components of X. The image of d is called the set of exact forms on X. The set of $pdx + qdy \in C^1(X)$ such that $\frac{\partial p}{\partial y} = \frac{\partial q}{\partial x}$ are called closed forms. It is clear that exact forms and closed forms are vector spaces and any exact form is a closed form. The quotient vector space of closed forms modulo exact forms is called the first De Rham Cohomology and denoted by $H^1(X)$.

A path for this discussion would mean piecewise smooth. That is, if $\gamma : I \to X$ is a path (a continuous map), there exists a subdivision, $0 = t_0 < t_1 < \cdots < t_n = 1$ and $\gamma(t)$ is continuously differentiable in the open intervals (t_i, t_{i+1}) for all i. Given a form ω and a path γ, we can integrate the form along the path.

Lemma 1. If $\gamma(0) = P, \gamma(1) = Q$ and $\omega = df$, by fundamental theorem of calculus, we see that $\int_\gamma \omega = f(Q) - f(P)$.

If γ is a closed path, we may think of γ as a map from I or S^1, whichever is convenient. Here is a self-evident lemma.

Lemma 2. If $\gamma : S^1 \to \mathbb{R}^2$ is a closed path, then $Y = \mathbb{R}^2 - \gamma(S^1)$ has a unique unbounded connected component.

Proof. Since $\gamma(S^1)$ is compact and hence bounded, we can find a closed bounded disc D containing $\gamma(S^1)$. It is immediate that $\mathbb{R}^2 - D$ is a connected open set contained in Y and hence contained in a connected component of Y. Any other connected component of Y must be hence completely contained in D and hence bounded. \qed

The union of the bounded connected components of Y as above is called the open region inside the closed curve $\gamma(S^1)$ and the complement of the unbounded component in \mathbb{R}^2 is called the closed region inside the closed curve $\gamma(S^1)$.

Lemma 3. Let ω be a closed form on X. Then it is exact if and only if $\int_\gamma \omega = 0$ for all closed paths γ in X.

Proof. If ω is exact, by lemma 1, we see that $\int_\gamma \omega = 0$. Conversely, given the vanishing, define a function on X by the following formula. Clearly we may assume that X is connected (and hence path connected). Fixing a point $a \in X$, for any $x \in X$, take a path γ from a to x and define $f(x) = \int_\gamma \omega$. The vanishing implies that $f(x)$ does not depend on the path γ and it is clear that $df = \omega$. \qed
2. Coboundary Homomorphism

Lemma 4 (partition of unity). Let X be covered by open sets $\{U_\alpha\}$. Then there exists a collection of smooth non-negative functions $\phi_\alpha : X \to \mathbb{R}$ such that $\text{Supp} \phi_\alpha \subset U_\alpha$, the supports are locally finite and $\sum \phi_\alpha = 1$.

Let $X = U \cup V$, union of two open sets. By partition of unity, we have $\phi_i, i = 1, 2$ such that $\text{Supp} \phi_1 \subset U$ and $\text{Supp} \phi_2 \subset V$, ϕ_i smooth on X and $\phi_1 + \phi_2 = 1$. If f is a smooth function on $U \cap V$, letting $f_1(x) = f(x)\phi_2(x)$ for $x \in U \cap V$ and $f_1(x) = 0$ for $x \in U - U \cap V$, we see that f_1 is smooth on U. Defining similarly, $f_2(x) = -\phi_1(x)f(x)$ for $x \in U \cap V$ and $f_2(x) = 0$ for $x \in V - U \cap V$, we see that $f_1 - f_2 = f$.

Now we define the coboundary map $H^0(U \cap V) \to H^1(X)$ as follows. Let $f \in H^0(U \cap V)$. Write $f = f_1 - f_2$ for smooth functions f_i on U as in the previous paragraph. Then $df_1 - df_2 = df = 0$, since f is locally constant and thus the two forms df_i patch together to get a form ω on X. Since it is locally exact, we see that $d\omega = 0$ and hence it is closed and thus defines an element in $H^1(X)$. Easy to check that this is well defined. So, we get,

$$(1) \quad \partial : H^0(U \cap V) \to H^1(X)$$

One can easily check that this map is a vector space homomorphism. That is, $\partial(f + g) = \partial(f) + \partial(g)$ and $\partial(af) = a\partial(f)$ for any real number a.

Lemma 5. $\partial(f) = 0$, if and only if $f = f_1 - f_2$, where $f_1 \in H^0(U), f_2 \in H^0(V)$. The class of a closed form ω is in the image of ∂ if and only if $\omega|_U, \omega|_V$ are exact.

Proof. If $f = f_1 - f_2$ with f_i locally constant, we have $df_i = 0$ and hence $\partial(f) = 0$.

Conversely, if $\partial(f) = d\phi$ where ϕ is a smooth function on X (which is what we mean by a class is zero in $H^1(X)$), writing $f = f_1 - f_2$ as before, we see that $df_1 = d\phi|_U$ and $df_2 = d\phi|_V$ and thus letting $g_i = f_i - \phi$, we see that $dg_i = 0$ and hence $g_1 \in H^0(U), g_2 \in H^0(V)$ and $g_1 - g_2 = f$.

We have seen that if ω is in the image of ∂ then ω restricted to U, V are exact by our definition. Conversely, if $\omega|_U = df_1, \omega|_V = df_2$, then letting $f = f_1 - f_2$, we have $df = 0$ and hence $f \in H^0(U \cap V)$ and $\partial(f) = \omega$. \hfill \square

3. Some computations

Lemma 6. Let X be any of the following:

1. \mathbb{R}^2.
2. Open half planes, like $x > a$ or open quadrants like $x > a, y > b$.
3. Open rectangle or disc.

Then $H^1(X) = 0$

Proof. If γ is a closed path in X, then the region enclosed by γ in \mathbb{R}^2 is completely contained in X and apply Green’s theorem. \hfill \square

Let $P = (x_0, y_0) \in \mathbb{R}^2$ and consider the form,

$$\omega_P = \frac{-(y - y_0)dx + (x - x_0)dx}{(x-x_0)^2 + (y-y_0)^2}.$$

Then ω_P is a smooth form everywhere except at P and it is closed. Letting $X = \mathbb{R}^2 - \{P\}$, we see that for any circle C around P, $\int_C \omega_P = 2\pi \neq 0$. Thus, by lemma
3, we see that \(\omega_P \neq 0 \) in \(H^1(X) \). If \(\omega \) is any other closed form on \(X \), let \(a = \int_C \omega \), and then letting \(\omega' = \omega - \frac{1}{2\pi} \omega_P \), we have, \(\omega' \) is a closed form with \(\int_C \omega' = 0 \). I claim, then that \(\omega' \) is exact.

So, let \(\omega \) be a closed form on \(X \) with \(\int_C \omega = 0 \). We wish to show that \(\omega \) is exact. For ease of notation, let us assume that \(\tilde{P} \) is the origin. Then \(X \) is covered by the four open sets,

\[
U_1 = \{x > 0\}, U_2 = \{y > 0\}, U_3 = \{x < 0\}, U_4 = \{y < 0\}.
\]

By lemma 6, \(\omega = df_i \) on \(U_i \). Thus, \(df_1 - df_2 = 0 \) in \(U_1 \cap U_2 \), which is connected and hence we see that \(f_2 = f_1 + c \) for some constant \(c \). Since \(df_2 = df_2 - c \), it is clear that we may replace \(f_2 \) by \(f_2 - c \) and hence assume that \(f_2 = f_1 \) in \(U_1 \cap U_2 \). Continuing, we may assume \(f_3 = f_2 \) in \(U_2 \cap U_3 \) and \(f_4 = f_3 \) in \(U_3 \cap U_4 \). Then we get, \(f_4 = f_1 + c \) in \(U_4 \cap U_1 \) for some constant \(c \).

Now cutting up our circle to be paths contained in \(U_i \)'s and calculating the integral of \(\omega \) with these \(f_i \)'s, we see that \(\int_C \omega = c \), which we have assumed to be zero. So, \(f_4 = f_1 \) in \(U_4 \cap U_1 \) and thus these \(f_i \)'s patch up to get a smooth function \(\phi \) on \(X \) and \(d\phi = \omega \). Thus \(\omega \) is zero in \(H^1(X) \).

This shows that \(H^1(X) \) is a one-dimensional vector space generated by the class of \(\omega_P \).

A similar argument will show that for any \(P \neq Q \in \mathbb{R}^2 \), \(H^1(\mathbb{R}^2 - \{P,Q\}) \) is a two dimensional vector space generated by \(\omega_P, \omega_Q \).

The form \(\omega_P \) and its integral is closely connected to winding numbers. Again, for convenience let us assume that \(P \) is the origin. If \(\gamma : I \to \mathbb{R}^2 - \{0\} \) is a (smooth) path, we have defined the winding number \(W(\gamma,0) \) as follows. We can subdivide the plane into small regions of the form \(a \leq \theta \leq b \) where \(b - a < 2\pi \) and then we can divide \(I \) as \(0 = t_0 < t_1 < \cdots < t_n = 1 \) so that \(\gamma([t_i, t_{i+1}]) \) is completely contained in these chosen regions. Then the angle \(\theta_i \) from \(\gamma(t_i) \) to \(\gamma(t_{i+1}) \) is well defined and we define \(W(\gamma,0) \) to be the sum of these \(\theta_i \)'s. (Actually, we defined it by dividing this number by \(2\pi \).)

One consequence is,

Lemma 7. If \(\gamma \) is a path as above, then

\[
\int_\gamma \omega_0 = W(\gamma,0).
\]

One immediately has the following corollary.

Corollary 8. Let \(A \subset \mathbb{R}^2 \) be a closed connected set and let \(P,Q \in A \). Then the class of \(\omega_P, \omega_Q \) are same in \(H^1(\mathbb{R}^2 - A) \).

Proof. Let \(\gamma \) be a closed path in \(\mathbb{R}^2 - A \). Suffices to show that \(\int_\gamma \omega_P = \int_\gamma \omega_Q \) by lemma 3. From the lemma above, suffices to show that \(W(\gamma,P) = W(\gamma,Q) \). Reversing the roles, \(W(\gamma,x) \) is a locally constant function on \(\mathbb{R}^2 - \gamma \) and since \(P,Q \) are in the same connected component of this set, since \(A \) is connected, we see that \(W(\gamma,P) = W(\gamma,Q) \).

4. Important Consequences

Theorem 9. Let \(\phi : I \to \mathbb{R}^2 \) be a homeomorphism to the image. Then \(\mathbb{R}^2 - \phi(I) \) is connected.

Proof. Let \(Y = \phi(I) \) and assume that the complement is not connected. Fix points \(P,Q \) in different connected components of \(\mathbb{R}^2 - Y \). Let \(A = \phi([0,1/2]) \)
and \(B = \phi([1/2,1]) \) and let \(S = \phi(1/2) \). Let \(U = \mathbb{R}^2 - A, V = \mathbb{R}^2 - B \). Then \(U \cap V = \mathbb{R}^2 - Y \) and \(U \cup V = \mathbb{R}^2 - \{S\} \). We have the coboundary homomorphism,

\[\partial : H^0(U \cap V) \to H^1(U \cup V). \]

Since the \(H^1 \) is a one dimensional vector space generated by \(\omega_S \), for any \(f \in H^0(U \cap V) \), \(\partial(f) = a\omega_S \) for some \(a \in \mathbb{R} \). By lemma 5, this means that \(a\omega_S \) is exact on \(U, V \). Any circle \(C \) of large radius around \(S \) is contained in both \(U, V \). By lemma 3, we must have \(\int_C a\omega_S = 0 \), but this is just \(2\pi a \). So, \(a = 0 \). In other words, the image of \(\partial \) is zero.

Pick a locally constant function \(f \) on \(U \cap V = \mathbb{R}^2 - Y \) such that \(f(P) \neq f(Q) \), which is possible, since \(P, Q \) are in different connected components. \(\partial(f) = 0 \) implies by lemma 5 that there exists \(f_1 \in H^0(U), f_2 \in H^0(V) \) such that \(f_1 - f_2 = f \). But, then either \(f_1(P) \neq f_2(Q) \) or \(f_2(P) \neq f_1(Q) \). Since \(f_i \)'s are locally constant, this means \(P, Q \) are in different connected components of \(U \) or \(V \). Fixing one such, we see that \(P, Q \) are in different connected components of say \(\mathbb{R}^2 - A \). Now call \(A = Y_1 \) and repeat the argument.

So, we get a sequence of closed intervals, \(I \supset I_1 \supset I_2 \supset \cdots \) with length of \(I_n = 2^{-n} \) and \(P, Q \) are in different connected components of \(\mathbb{R}^2 - Y_n \), where \(Y_n = \phi(I_n) \). By nested interval theorem, \(\cap_{n=1}^\infty Y_n = \{T\} \). But \(\mathbb{R}^2 - \{T\} \) is connected and so we can find a path connecting \(P, Q \) in this open set. So, there exists a small disc around \(T \) which does not intersect this path. It is immediate that \(Y_n \) for large \(n \) must be contained in this disc. So, the path does not intersect \(Y_n \) for large \(n \) and thus \(P, Q \) are in the same connected component of \(\mathbb{R}^2 - Y_n \) for large \(n \), contradicting our earlier assertion. This proves the theorem.

\[\square \]

Theorem 10 (Jordan Curve Theorem). Let \(\phi : S^1 \to \mathbb{R}^2 \) be a homeomorphism onto its image. Then \(\mathbb{R}^2 - \phi(S^1) \) has exactly two connected components, one unbounded and the other bounded.

Proof. The second part will follow from what we have already proved, if we prove the first part. Let \(Y = \phi(S^1) \) and let \(P \neq Q \) two points on \(Y \). Then \(Y \) can be written as the union of two paths from \(P, Q \), both homeomorphic to the unit interval. Call these \(A, B \). Then \(Y = A \cup B \) and let \(U = \mathbb{R}^2 - A, V = \mathbb{R}^2 - B \). So, we have \(U \cap V = \mathbb{R}^2 - Y \) and \(U \cup V = \mathbb{R}^2 - \{P, Q\} \). We wish to show that \(H^0(U \cap V) \) is two dimensional.

From the previous theorem, we know that \(H^0(U), H^0(V) \) both are one-dimensional, consisting of the constant functions. If \(f \in H^0(U \cap V) \) with \(\partial(f) = 0 \) by lemma 5, we can write \(f = f_1 - f_2 \) with \(f_i \) both constant functions on \(U, V \) respectively. Then it is clear that this kernel is one dimensional. For \(f \in H^0(U \cap V) \), we can write \(\partial(f) = a\omega_P + b\omega_Q \) for \(a, b \in \mathbb{R} \). Again, by lemma 5, this form must be exact on \(U, V \). Taking a large circle \(C \) containing \(Y \), we see that,

\[\int_C a\omega_P + b\omega_Q = 2\pi(a + b). \]

Since this must be zero, we see that \(a + b = 0 \). Thus the image of \(\partial \) is contained in the one dimensional vector space generated by \(\omega = \omega_P - \omega_Q \). We will show that this is in the image and then we will have \(H^0(U \cap V) \) to be two dimensional.

So, we want to show that \(\omega \) restricted to both \(U, V \) are exact. But by corollary 8, this is clear. This finishes the proof.

\[\square \]