Math 418, Homework 7, due March 29th 2011

(2) Do problem 7, page 335.
(3) Let \(f(z) \) be a polynomial with complex coefficients of degree at least two.

 (a) Show that the map \(\phi : \mathbb{C} \to \mathbb{C} \) given by \(a \mapsto f(a) \) is never a covering map. (Hint: see the next part).

 (b) Let \(R \subset \mathbb{C} \) be the finite set of points where \(f'(z) = 0 \) (called the ramification locus) and let \(B = \phi(R) \) (called the branch locus). Show that the map \(\phi : \mathbb{C} - \phi^{-1}(B) \to \mathbb{C} - B \) is a covering map.

(4) We call a covering \(p : E \to B \) finite, if \(p^{-1}(b) \) is finite for all \(b \in B \).

 (a) If \(p : E \to B \) is finite and \(B \) is connected, show that the cardinality of \(p^{-1}(b) \) is constant, independent of \(b \in B \).

 (b) If \(p : E \to B \) is finite and \(B \) is compact, show that \(E \) is compact.