
ANSWERS TO HOMEWORK 1

All solutions should be with proofs, you may quote from the book

(1) Decide which of the following are equivalence relations and
describe the set of equivalence classes in a familiar form if it is
an equivalence relation. (For example, in problem (b) below,
the equivalence classes can be identified with f (S), the image
of f .)
(a) Let S = R2 and If p, q ∈ S, we say p ∼ q if the distance

between them is less than one.

Solution. As usual, we write ‖p − q‖ to denote the dis-
tance between p, q. Clearly, ‖p − p‖ = 0 < 1 and if
‖p − q‖ < 1, so is ‖q − p‖. So, this relation satisfies re-
flexivity and symmetry. But this does not satisfy transi-
tivity and hence not an equivalence relation. To see this
one just needs a single example, so take p = (0, 0), q =
(3/4, 0), r = (3/2, 0). Then ‖p− q‖ = 3/4 = ‖q− r‖, but
‖p− r‖ = 3/2 > 1. Thus, p ∼ q, q ∼ r but p 6∼ r. �

(b) Let f : S→ T be a mapping. For s1, s2 ∈ S, we say s1 ∼ s2
if f (s1) = f (s2).

Solution. For any s ∈ S, we have f (s) = f (s) and thus
s ∼ s. If s ∼ t, f (s) = f (t) and thus t ∼ s. Finally, if
s ∼ t, t ∼ u, we have f (s) = f (t) and f (t) = f (u) and
thus f (s) = f (u). So s ∼ u. So, we have checked all the
three properties necessary for an equivalence relation.
The set of equivalence classes as I said earlier, can be
identified with f (S). (If you think about it, all equiva-
lence relations on a set S lead to a picture like this with T
the set of equivalence classes.) �

(c) Let S = R. We say for a, b ∈ S, a ∼ b if a− b ∈ Z.

Solution. I will leave you to check that this is indeed an
equivalence relation (and it is easy). I claim that the set of
equivalence classes can be identified with the unit circle
S1 ⊂ R2, with center the origin and radius 1. For this,
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consider the map, f : R→ S1, f (a) = (cos 2πa, sin 2πa).
�

(d) Let S be the set of non-zero complex numbers. If a, b ∈ S,
a ∼ b if there is a positive real number r such that a = rb.

Solution. Again, checking this is an equivalence relation
is easy. For example, a ∼ a since a = 1 · a. If a ∼ b and
thus a = rb with r > 0, then b = 1

r a (and 1
r > 0). So,

b ∼ a. Similarly, if a ∼ b, b ∼ c, we have a = rb, b = sc
with r, s positive. Then a = rsc with rs > 0 and thus
a ∼ c.
Again, I claim that the set of equivalence classes can be
identified with the unit circle. For this consider the map
f : S→ S1, given by f (a) = a

|a| . �

(2) Let S be a finite set of n elements and let P(S) be the power
set (i.e. the set of all subsets of S). Show that it is finite and
has 2n elements. (In particular, there can not be a one-to-one,
onto mapping from S→ P(S). The last statement is also true
if S is infinite. Have you seen a proof?)

Solution. We use induction on n. If n = 1, then S has exactly
two subsets, itself and the empty set, so P(S) has 2 elements.

Now assume the result proved for n− 1 and let S be a set
with n elements. We pick one element a ∈ S. We can divide
the subsets of S in two groups, the ones containing a and the
ones not containing a. If A is a subset containing a, then A−
{a} ⊂ S− {a} = T and given a subset of T, by adding a to it
we get a subset of S containing A. So these are in one-to-one
correspondence with P(T) and since T has n− 1 elements, by
induction hypothesis, this collection has 2n−1 elements.

Next, we consider subsets not containing a. But these are
precisely subsets of T and thus again there are 2n−1 of them.
Thus the total number of elements in P(S) is 2n−1 + 2n−1 =
2n. �

(3) Again, let S be a set with n elements. Construct a one-to- one
correspondence f : S → S such that f n = Id (composition of
f , n times), but f m 6= Id for 0 < m < n.
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Solution. Write S = {a1, . . . , an} and define f as, f (a1) =
a2, f (a2) = a3, . . . , f (an−1 = an, f (an) = a1. One can check
that this has all the properties. (A better way would be to in-
dex the set with elements of Z/nZ, which is Jn in the book.
So, S = {a[x]|[x] ∈ Z/nZ}. Then f (a[x]) = a[x+1].) �

(4) Again, let S be a set with n elements and A(S), the set of all
one-to-one onto maps from S to itself. Show that A(S) has n!
elements.

Solution. Let T be another set with n elements. It suffices to
show that the set of one-one-one onto maps (called bijective
maps) from S to T has n! elements. We do this by induction.

If n = 1, S = {a}, T = {b} and then clearly there is only
one such map from S to T.

So, assume proved for n− 1 and let S, T have n elements.
Pick an a ∈ S. For any bijective f , we have f (a) ∈ T, which
can be any element in T and thus has n choices. Then, f gives
a bijection from S−{a} → T−{ f (b)} and these are sets with
n− 1 elements and thus there are (n− 1)! possibilities. Thus,
the total number is n · (n− 1)! = n!. �

(5) Let n, m be two positive integers. We will write Z/nZ for
Jn, used in the book, which is more standard. Let πn : Z →
Z/nZ be the map πn(a) = [a]. Consider the map f : Z →
Z/nZ × Z/mZ, f (a) = (πn(a), πm(a)). Find a necessary
and sufficient condition on n, m so that f is onto.

Solution. Let gcd(n, m) = d. First, let us look at the case d > 1.
Then, I claim ([1], [d]) is not in the image. If it were, we should
have a ∈ Z such that πn(a) = [1], πm(a) = [d]. The second
gives, a− d = rm and so a = d + rm. Since d divides m, we
see that d divides a. But the first gives a − 1 = sn and so
a− sn = 1. But, both a, n are divisible by d which implies d
divides 1, a contradiction.

Next, we look at the case d = 1. We will show that in this
case f is onto. (This is known as Chinese Remainder Theo-
rem.) So, let [p] ∈ Z/nZ, [q] ∈ Z/mZ. Since gcd(n, m) = 1,
we can find integers r, s such that rn + sm = 1. So, we get
p − q = (p − q)rn + (p − q)sm and thus p − (p − q)rn =
q + (p − q)sm, which we call a and then πn(a) = [p] and
πm(a) = [q]. �
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(6) Let End(Z/nZ) (End is an abbreviation for endomorphisms)
be the set of of all maps f : Z/nZ→ Z/nZ satisfying f ([a] +
[b]) = f ([a]) + f ([b]) for all a, b ∈ Z. Calculate the number of
elements (cardinality) in this set.

Solution. Let f be such an endomorphism and let f ([1]) = [x].
Then we get f ([2]) = f ([1]) + f ([1]) = [x] + [x] = [2x] and
i should be clear that similarly, for any [p], f ([p]) = [xp].
So, [x] determines such a map. Conversely, given any [x] ∈
Z/nZ, one can define an endomorphism f by f ([p]) = [xp].
I will leave you to check that this does indeed define an endo-
morphism. So, the number of such maps is exactly the num-
ber of elements in Z/nZ, which is n. �


