ANSWERS TO HOMEWORK 1

All solutions should be with proofs, you may quote from the book

(1) Decide which of the following are equivalence relations and describe the set of equivalence classes in a familiar form if it is an equivalence relation. (For example, in problem (b) below, the equivalence classes can be identified with $f(S)$, the image of f.)
(a) Let $S=\mathbb{R}^{2}$ and If $p, q \in S$, we say $p \sim q$ if the distance between them is less than one.

Solution. As usual, we write $\|p-q\|$ to denote the distance between p, q. Clearly, $\|p-p\|=0<1$ and if $\|p-q\|<1$, so is $\|q-p\|$. So, this relation satisfies reflexivity and symmetry. But this does not satisfy transitivity and hence not an equivalence relation. To see this one just needs a single example, so take $p=(0,0), q=$ $(3 / 4,0), r=(3 / 2,0)$. Then $\|p-q\|=3 / 4=\|q-r\|$, but $\|p-r\|=3 / 2>1$. Thus, $p \sim q, q \sim r$ but $p \nsim r$.
(b) Let $f: S \rightarrow T$ be a mapping. For $s_{1}, s_{2} \in S$, we say $s_{1} \sim s_{2}$ if $f\left(s_{1}\right)=f\left(s_{2}\right)$.
Solution. For any $s \in S$, we have $f(s)=f(s)$ and thus $s \sim s$. If $s \sim t, f(s)=f(t)$ and thus $t \sim s$. Finally, if $s \sim t, t \sim u$, we have $f(s)=f(t)$ and $f(t)=f(u)$ and thus $f(s)=f(u)$. So $s \sim u$. So, we have checked all the three properties necessary for an equivalence relation.
The set of equivalence classes as I said earlier, can be identified with $f(S)$. (If you think about it, all equivalence relations on a set S lead to a picture like this with T the set of equivalence classes.)
(c) Let $S=\mathbb{R}$. We say for $a, b \in S, a \sim b$ if $a-b \in \mathbb{Z}$.

Solution. I will leave you to check that this is indeed an equivalence relation (and it is easy). I claim that the set of equivalence classes can be identified with the unit circle $S^{1} \subset \mathbb{R}^{2}$, with center the origin and radius 1 . For this,
consider the map, $f: \mathbb{R} \rightarrow S^{1}, f(a)=(\cos 2 \pi a, \sin 2 \pi a)$.
(d) Let S be the set of non-zero complex numbers. If $a, b \in S$, $a \sim b$ if there is a positive real number r such that $a=r b$.

Solution. Again, checking this is an equivalence relation is easy. For example, $a \sim a$ since $a=1 \cdot a$. If $a \sim b$ and thus $a=r b$ with $r>0$, then $b=\frac{1}{r} a$ (and $\frac{1}{r}>0$). So, $b \sim a$. Similarly, if $a \sim b, b \sim c$, we have $a=r b, b=s c$ with r, s positive. Then $a=r s c$ with $r s>0$ and thus $a \sim c$.
Again, I claim that the set of equivalence classes can be identified with the unit circle. For this consider the map $f: S \rightarrow S^{1}$, given by $f(a)=\frac{a}{|a|}$.
(2) Let S be a finite set of n elements and let $\mathcal{P}(S)$ be the power set (i.e. the set of all subsets of S). Show that it is finite and has 2^{n} elements. (In particular, there can not be a one-to-one, onto mapping from $S \rightarrow \mathcal{P}(S)$. The last statement is also true if S is infinite. Have you seen a proof?)

Solution. We use induction on n. If $n=1$, then S has exactly two subsets, itself and the empty set, so $\mathcal{P}(S)$ has 2 elements.

Now assume the result proved for $n-1$ and let S be a set with n elements. We pick one element $a \in S$. We can divide the subsets of S in two groups, the ones containing a and the ones not containing a. If A is a subset containing a, then $A-$ $\{a\} \subset S-\{a\}=T$ and given a subset of T, by adding a to it we get a subset of S containing A. So these are in one-to-one correspondence with $\mathcal{P}(T)$ and since T has $n-1$ elements, by induction hypothesis, this collection has 2^{n-1} elements.

Next, we consider subsets not containing a. But these are precisely subsets of T and thus again there are 2^{n-1} of them. Thus the total number of elements in $\mathcal{P}(S)$ is $2^{n-1}+2^{n-1}=$ 2^{n}.
(3) Again, let S be a set with n elements. Construct a one-to- one correspondence $f: S \rightarrow S$ such that $f^{n}=\operatorname{Id}$ (composition of f, n times), but $f^{m} \neq$ Id for $0<m<n$.

Solution. Write $S=\left\{a_{1}, \ldots, a_{n}\right\}$ and define f as, $f\left(a_{1}\right)=$ $a_{2}, f\left(a_{2}\right)=a_{3}, \ldots, f\left(a_{n-1}=a_{n}, f\left(a_{n}\right)=a_{1}\right.$. One can check that this has all the properties. (A better way would be to index the set with elements of $\mathbb{Z} / n \mathbb{Z}$, which is J_{n} in the book. So, $S=\left\{a_{[x]} \mid[x] \in \mathbb{Z} / n \mathbb{Z}\right\}$. Then $f\left(a_{[x]}\right)=a_{[x+1]}$.
(4) Again, let S be a set with n elements and $A(S)$, the set of all one-to-one onto maps from S to itself. Show that $A(S)$ has n ! elements.

Solution. Let T be another set with n elements. It suffices to show that the set of one-one-one onto maps (called bijective maps) from S to T has n ! elements. We do this by induction.

If $n=1, S=\{a\}, T=\{b\}$ and then clearly there is only one such map from S to T.

So, assume proved for $n-1$ and let S, T have n elements. Pick an $a \in S$. For any bijective f, we have $f(a) \in T$, which can be any element in T and thus has n choices. Then, f gives a bijection from $S-\{a\} \rightarrow T-\{f(b)\}$ and these are sets with $n-1$ elements and thus there are $(n-1)$! possibilities. Thus, the total number is $n \cdot(n-1)!=n!$.
(5) Let n, m be two positive integers. We will write $\mathbb{Z} / n \mathbb{Z}$ for J_{n}, used in the book, which is more standard. Let $\pi_{n}: \mathbb{Z} \rightarrow$ $\mathbb{Z} / n \mathbb{Z}$ be the map $\pi_{n}(a)=[a]$. Consider the map $f: \mathbb{Z} \rightarrow$ $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}, f(a)=\left(\pi_{n}(a), \pi_{m}(a)\right)$. Find a necessary and sufficient condition on n, m so that f is onto.

Solution. Let $\operatorname{gcd}(n, m)=d$. First, let us look at the case $d>1$. Then, I claim ($[1],[d])$ is not in the image. If it were, we should have $a \in \mathbb{Z}$ such that $\pi_{n}(a)=[1], \pi_{m}(a)=[d]$. The second gives, $a-d=r m$ and so $a=d+r m$. Since d divides m, we see that d divides a. But the first gives $a-1=s n$ and so $a-s n=1$. But, both a, n are divisible by d which implies d divides 1, a contradiction.

Next, we look at the case $d=1$. We will show that in this case f is onto. (This is known as Chinese Remainder Theorem.) So, let $[p] \in \mathbb{Z} / n \mathbb{Z},[q] \in \mathbb{Z} / m \mathbb{Z}$. Since $\operatorname{gcd}(n, m)=1$, we can find integers r, s such that $r n+s m=1$. So, we get $p-q=(p-q) r n+(p-q) s m$ and thus $p-(p-q) r n=$ $q+(p-q) s m$, which we call a and then $\pi_{n}(a)=[p]$ and $\pi_{m}(a)=[q]$.
(6) Let $\operatorname{End}(\mathbb{Z} / n \mathbb{Z})$ (End is an abbreviation for endomorphisms) be the set of of all maps $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ satisfying $f([a]+$ $[b])=f([a])+f([b])$ for all $a, b \in \mathbb{Z}$. Calculate the number of elements (cardinality) in this set.
Solution. Let f be such an endomorphism and let $f([1])=[x]$. Then we get $f([2])=f([1])+f([1])=[x]+[x]=[2 x]$ and i should be clear that similarly, for any $[p], f([p])=[x p]$. So, $[x]$ determines such a map. Conversely, given any $[x] \in$ $\mathbb{Z} / n \mathbb{Z}$, one can define an endomorphism f by $f([p])=[x p]$. I will leave you to check that this does indeed define an endomorphism. So, the number of such maps is exactly the number of elements in $\mathbb{Z} / n \mathbb{Z}$, which is n.

