HOMEWORK 10, DUE THU APR 15TH

All solutions should be with proofs, you may quote from the book or from previous home works

- (1) Let *A* be a PID. A module *D* is called *divisible* if for any non-zero $a \in A$, the multiplication map $D \xrightarrow{a} D$ is onto.
 - (a) Show that *K*, the fraction field of *A* (which is naturally an *A*-module) is divisible. Also, if *D* is divisible, any quotient module of *D* is divisible.

Solution. Given any $x \in D$, we can take $y = x/a \in K$, since $a \neq 0$. Then ay = x, which says the multiplication map is onto. Let $\pi : D \to E$ be any quotient module, so π is onto. Given $x \in E$, lift it to $x' \in D$, so that $\pi(x') = x$. Then, we have $y' \in D$ with ay' = x' and then $a\pi(y') = x$.

(b) Let $N \subset M$ are modules and let $f : N \to D$ is a homomorphism, where D is divisible. Show that there is a homomorphism $g : M \to D$ such that g(n) = f(n) for all $n \in N$. (Hint: You will need Zorn's lemma).

Solution. Consider the collection consisting of (K, g_K) where $N \subset K \subset M$, K a submodule of M and $g_K : K \to D$ is an A-module homomorphism such that $g_K(n) = f(n)$ for all $n \in N$. This set is non-empty, since it contains (N, f). We introduce a partial order on this collection by saying $(K, g_K) \leq (L, g_L)$ if $K \subset L$ and $g_L(k) = g_K(k)$ for all $k \in K$. Easy to see that this is a partial order. Now, let (K_i, g_{K_i}) be a totally ordered subset (and I will take $i \in \mathbb{N}$ for convenience of writing, but any totally ordered indexing set will do.) so that $K_i \subset K_{i+1}$ and $g_{K_{i+1}}(x) = g_{K_i}(x)$ for all $x \in K_i$. Then, let $L = \bigcup K_i$ and define $g : L \to D$ by $g(x) = g_{K_i}(x)$ if $x \in K_i$. You can see that the map does not depend on which K_i we pick containing x. Then (L, g) is in our set and is maximal for the K_i s since it contains all of them. So, Zorn's lemma applies and thus we have a maximal element (P,g) in our set. If P = M, we are done. So, assume not. Pick an $m \in M$, not in P. Let Q = P + Am, the submodule generated by P and m. We will extend g to Q, contradicting maximality of (P,g). There are two cases. Either the ideal $I = \{a \in A | am \in P\}$ is zero or non-zero.

If I = 0, we see that any element in Q can be *uniquely* written as p + qm for some $p \in P, q \in A$. Then define $g' : Q \to D$ by g'(p + qm) = g(p). I will leave you to verify that this does give an extension.

Next, assume that $I \neq 0$ and then I = qA for some $0 \neq q \in A$, since A is a PID. Let $qm = p \in P$. Let x = g(p) and let $y \in D$ be such that qy = x. Define $g' : Q \rightarrow D$ by g'(p + am) = g(p) + ay. I will leave you to check that this is well defined and thus gives an extension.

(c) If *D* is a divisible module and is a submodule of a module *M*, show that there is a submodule $N \subset M$ such that $N \oplus D \cong M$. (This means, N + D = M, $N \cap D = 0$).

Solution. Consider the map $D \to D$, identity. By the previous problem, we get a homomorphism $g : M \to D$ such that g(x) = x for all $x \in D$. Let N = Ker g. Easy to check that N + D = M and $N \cap D = 0$.

(d) Let M = A/pA where $p \in A$ is a prime. Show that M is the submodule of some divisible module.

Solution. Let *K* be the fraction field of *A*, which we know is divisible. So, D = K/A is also divisible. Consider the element $x \in K/A$ which is the image of $\frac{1}{p} \in K$. We have a module homomorphism $A \rightarrow D$, by sending $1 \mapsto x$. Since px = 0, we see that the kernel of this map is precisely pA and thus we have an inclusion $A/pA \subset D$.

(2) We consider the filed extension, $\mathbb{Q} \subset \mathbb{R}$.

(a) Show that $\sqrt{2}$, $\sqrt{3} \in \mathbb{R}$ are algebraic over \mathbb{Q} . Find a polynomial $P(X) \in \mathbb{Q}[X]$ of degree 4 such that $P(\sqrt{2} + \sqrt{3}) = 0$. Decide whether this polynomial is irreducible over \mathbb{Q} .

Solution. Since $\sqrt{2}$ is a root of $X^2 - 2 \in \mathbb{Q}[X]$, we see that it is algebraic and similarly for $\sqrt{3}$. Let $u = \sqrt{2} + \sqrt{3}$. We have, $u^2 = 5 + 2\sqrt{6}$. So, $(u^2 - 5)^2 = 24$, or $u^4 - 10u^2 + 1 = 0$. So, we get Q(u) = 0 where $Q(X) = X^4 - 10X^2 + 1$.

There are many ways of proving *Q* is irreducible. Let me do it the naive way. If it is not irreducible, either it has a linear factor or all factors of degree greater than one. In the former case, *Q* has a root $t \in \mathbb{Q}$. Then, $t^2 \in \mathbb{Q}$ and t^2 is a root of the quadratic polynomial $Y^2 - 10Y + 1$. But, quadratic formula tells us that the roots of this polynomial are $\frac{10\pm\sqrt{100-1}}{2}$ and then $\sqrt{99} = 3\sqrt{11} \in \mathbb{Q}$, which is not true. So, \overline{Q} must factor as product of two quadratic polynomials, say $X^2 + aX + b$, $X^2 + cX + d$. Multiplying, we get $X^4 + (a + c)X^3 + (ac + b + d)X^2 + (ad + bc)X +$ bd. Thus, c = -a, a(d - b) = 0, bd = 1. If a = 0, we have c = 0 and b + d = -10 and bd = 1, which is impossible (again by quadratic formula, since this gives $b^{2} + 10b + 1 = 0$). So, $a \neq 0$ and then b = d. So, b = d = 1or b = d = -1. Then, we get, since ac + bd = -10, $-a^{2} + 2 = -10$ or $-a^{2} - 2 = -10$ and these give $a^{2} = 12$ or $a^2 = 8$, neither is possible with $a \in \mathbb{Q}$.

- (b) Show that $\sqrt{2} + \sqrt[3]{5}$ is algebraic over Q of degree 6.

Solution. The idea is the same. Let $u = \sqrt{2} + 5^{1/3}$. Then, $(u - \sqrt{2})^3 = 5$, which gives, $u^3 - 3\sqrt{2}u^2 + 6u - 2\sqrt{2} = 5$. Thus, $u^3 + 6u - 5 = \sqrt{2}(3u^2 + 2)$. Squaring, we get, $(u^3 + 6u - 5)^2 = 2(3u^2 + 2)^2$. Elementary algebra gives us a polynomial of degree 6 satisfied by u.

- (3) We say an element in $a \in \mathbb{C}$ is an algebraic *integer*, if it satisfies an equation $a^n + a_1 a^{n-1} + \cdots + a_n = 0$ where $a_i \in \mathbb{Z}$. For example, $\sqrt{-1}$, $2^{\frac{1}{5}}$ are algebraic integers.
 - (a) Show that if $a \in \mathbb{C}$ is algebraic over \mathbb{Q} , there is some positive integer *N* such that *Na* is an algebraic integer.

Solution. If *a* is algebraic, we have an equation $a^n + a_1 a^{n-1} + \cdots + a_n = 0$ with $a_i \in \mathbb{Q}$. Choose a positive integer

N such that Na_i s are integers for all *i*. Multiplying the above equation by N^n , we get,

 $(Na)^n + Na_1(Na)^{n-1} + N^2a_2(Na)^{n-2} + \dots + N^na_n = 0.$

Since Na_i s are integers, we see that Na is an algebraic integer.

(b) If $a \in \mathbb{Q}$ is an algebraic integer, show that $a \in \mathbb{Z}$.

Solution. If $r \in \mathbb{Q}$ an algebraic integer with an equation $r^n + a_1r^{n-1} + \cdots + a_n = 0$ where $a_i \in \mathbb{Z}$, write r = a/b with a, b integers as usual and gcd(a, b) = 1. Then, multiply the above by b^n to get, $a^n + a_1a^{n-1}b + \cdots + a_nb^n = 0$. Notice all the terms are integers now and all the terms after the first is divisible by b and so $b|a^n$. Since gcd(a, b) = 1, this says b = 1 and thus r is an integer.

(c) If *a* is an algebraic integer, show that the ring $\mathbb{Z}[a]$ is a finitely generated module over \mathbb{Z} .

Solution. If *a* satisfies an equation $a^n + a_1 a^{n-1} + \cdots + a_n$, one checks that $1, a, a^2, \ldots, a^{n-1}$ generate $\mathbb{Z}[a]$ as a \mathbb{Z} -module.

(d) Show that if a, b are algebraic integers, so are a + b, ab. (Do not attempt to find the polynomials satisfied by these.)

Solution. Very much like what we did for fields, if $\mathbb{Z}[a]$ is generated by e_1, \ldots, e_m as a \mathbb{Z} - module and similarly v_1, \ldots, v_m generates $\mathbb{Z}[b]$, one easily checks that $\{e_i v_j\}$ generate $\mathbb{Z}[a, b]$ and since $\mathbb{Z}[a + b] \subset \mathbb{Z}[a, b]$, we see that $\mathbb{Z}[a + b]$ is finitely generated and being torsion free, it is free, say of some rank p. Multiplication by a + b on $\mathbb{Z}[a + b]$ can be thought of as a $p \times p$ integer matrix. Let P(X) be the characteristic (monic) polynomial of this matrix (of degree p) and then, P(a + b) = 0, showing a + b is algebraic. Case of ab is identical.

(4) Show that $\cos r\pi$, $\sin r\pi$ are algebraic, where $r \in \mathbb{Q}$ and the angles are in radians as usual. (De Moivre's theorem).

Solution. De Moivre says, $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$ for any n > 0. So, write r = a/n with a, n integers and

n > 0. Since $\cos a\pi$, $\sin a\pi$ are integers, taking $\theta = r\pi$ above, we get $\cos r\pi + i \sin r\pi$ is algebraic. Similarly, taking $\theta = -r\pi$, one gets, $\cos r\pi - i \sin r\pi$ is algebraic. Adding, we get $2\cos r\pi$, $2i\sin r\pi$ are both algebraic. The rest is clear, since $i \neq 0$ is also algebraic.

- (5) Let *F* be a finite field with say *q* elements.
 - (a) Show that the characteristic of *F* is a prime number *p* and $q = p^m$ for some *m*.

Solution. We know the characteristic must be a prime number, since the only other option is characteristic zero and then we have $\mathbb{Q} \subset F$ and in particular, F must be infinite. If it is p, we have $\mathbb{F}_p \subset F$ and F is a finite dimensional (F is finite!), say of dimension m, then clearly $q = p^m$. \Box

(b) Show that $a^q = a$ for all $a \in F$.

Solution. F^* , the non-zero elements of F form an abelian group of order q - 1 and thus for any $0 \neq a \in F$, we have $a^{q-1} = 1$ and thus $a^q = a$. If a = 0, this is trivial.

(c) Let $F \subset L$ be a field extension and let $a \in L$ algebraic over *F*. Show that $a^{q^m} = a$ for some positive integer *m*.

Solution. We look at $F \subset F(a) \subset L$ and since *a* is algebraic, we see that [F(a) : F] is finite, say *m*. Then *F* has q^m elements and so the result follows from the previous part.