
HOMEWORK 10, DUE THU APR 15TH

All solutions should be with proofs, you may quote from the book or from
previous home works

(1) Let A be a PID. A module D is called divisible if for any non-
zero a ∈ A, the multiplication map D a→ D is onto.
(a) Show that K, the fraction field of A (which is naturally an

A-module) is divisible. Also, if D is divisible, any quo-
tient module of D is divisible.

Solution. Given any x ∈ D, we can take y = x/a ∈ K,
since a 6= 0. Then ay = x, which says the multiplication
map is onto. Let π : D → E be any quotient module, so
π is onto. Given x ∈ E, lift it to x′ ∈ D, so that π(x′) = x.
Then, we have y′ ∈ D with ay′ = x′ and then aπ(y′) =
x. �

(b) Let N ⊂ M are modules and let f : N → D is a ho-
momorphism, where D is divisible. Show that there is a
homomorphism g : M→ D such that g(n) = f (n) for all
n ∈ N. (Hint: You will need Zorn’s lemma).

Solution. Consider the collection consisting of (K, gK) where
N ⊂ K ⊂ M, K a submodule of M and gK : K → D is an
A-module homomorphism such that gK(n) = f (n) for
all n ∈ N.This set is non-empty, since it contains (N, f ).
We introduce a partial order on this collection by saying
(K, gK) ≤ (L, gL) if K ⊂ L and gL(k) = gK(k) for all
k ∈ K. Easy to see that this is a partial order.
Now, let (Ki, gKi) be a totally ordered subset (and I will
take i ∈ N for convenience of writing, but any totally
ordered indexing set will do.) so that Ki ⊂ Ki+1 and
gKi+1(x) = gKi(x) for all x ∈ Ki.Then, let L = ∪Ki and
define g : L → D by g(x) = gKi(x) if x ∈ Ki. You can
see that the map does not depend on which Ki we pick
containing x. Then (L, g) is in our set and is maximal for
the Kis since it contains all of them.
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So, Zorn’s lemma applies and thus we have a maximal
element (P, g) in our set. If P = M, we are done. So,
assume not. Pick an m ∈ M, not in P. Let Q = P + Am,
the submodule generated by P and m. We will extend g
to Q, contradicting maximality of (P, g). There are two
cases. Either the ideal I = {a ∈ A|am ∈ P} is zero or
non-zero.
If I = 0, we see that any element in Q can be uniquely
written as p + qm for some p ∈ P, q ∈ A. Then define
g′ : Q → D by g′(p + qm) = g(p). I will leave you to
verify that this does give an extension.
Next, assume that I 6= 0 and then I = qA for some 0 6=
q ∈ A, since A is a PID. Let qm = p ∈ P. Let x = g(p)
and let y ∈ D be such that qy = x. Define g′ : Q → D
by g′(p + am) = g(p) + ay. I will leave you to check that
this is well defined and thus gives an extension. �

(c) If D is a divisible module and is a submodule of a module
M, show that there is a submodule N ⊂ M such that
N ⊕ D ∼= M. (This means, N + D = M, N ∩ D = 0).

Solution. Consider the map D → D, identity. By the pre-
vious problem, we get a homomorphism g : M → D
such that g(x) = x for all x ∈ D. Let N = Ker g. Easy to
check that N + D = M and N ∩ D = 0. �

(d) Let M = A/pA where p ∈ A is a prime. Show that M is
the submodule of some divisible module.

Solution. Let K be the fraction field of A, which we know
is divisible. So, D = K/A is also divisible. Consider
the element x ∈ K/A which is the image of 1

p ∈ K. We
have a module homomorphism A→ D, by sending 1 7→
x. Since px = 0, we see that the kernel of this map is
precisely pA and thus we have an inclusion A/pA ⊂ D.

�

(2) We consider the filed extension, Q ⊂ R.
(a) Show that

√
2,
√

3 ∈ R are algebraic over Q. Find a poly-
nomial P(X) ∈ Q[X] of degree 4 such that P(

√
2+
√

3) =
0. Decide whether this polynomial is irreducible over Q.
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Solution. Since
√

2 is a root of X2 − 2 ∈ Q[X], we see
that it is algebraic and similarly for

√
3. Let u =

√
2 +√

3. We have, u2 = 5 + 2
√

6. So, (u2 − 5)2 = 24, or
u4 − 10u2 + 1 = 0. So, we get Q(u) = 0 where Q(X) =
X4 − 10X2 + 1.
There are many ways of proving Q is irreducible. Let me
do it the naive way. If it is not irreducible, either it has a
linear factor or all factors of degree greater than one. In
the former case, Q has a root t ∈ Q. Then, t2 ∈ Q and t2

is a root of the quadratic polynomial Y2 − 10Y + 1. But,
quadratic formula tells us that the roots of this polyno-
mial are 10±

√
100−1
2 and then

√
99 = 3

√
11 ∈ Q, which is

not true. So, Q must factor as product of two quadratic
polynomials, say X2 + aX + b, X2 + cX + d. Multiplying,
we get X4 + (a + c)X3 + (ac + b + d)X2 + (ad + bc)X +
bd. Thus, c = −a, a(d − b) = 0, bd = 1. If a = 0, we
have c = 0 and b + d = −10 and bd = 1, which is
impossible (again by quadratic formula, since this gives
b2 + 10b+ 1 = 0). So, a 6= 0 and then b = d. So, b = d = 1
or b = d = −1. Then, we get, since ac + bd = −10,
−a2 + 2 = −10 or −a2 − 2 = −10 and these give a2 = 12
or a2 = 8, neither is possible with a ∈ Q.

�

(b) Show that
√

2 + 3
√

5 is algebraic over Q of degree 6.

Solution. The idea is the same. Let u =
√

2 + 51/3. Then,
(u−

√
2)3 = 5, which gives, u3 − 3

√
2u2 + 6u− 2

√
2 =

5. Thus, u3 + 6u − 5 =
√

2(3u2 + 2). Squaring, we get,
(u3 + 6u− 5)2 = 2(3u2 + 2)2. Elementary algebra gives
us a polynomial of degree 6 satisfied by u.

�

(3) We say an element in a ∈ C is an algebraic integer, if it satisfies
an equation an + a1an−1 + · · · + an = 0 where ai ∈ Z. For
example,

√
−1, 2

1
5 are algebraic integers.

(a) Show that if a ∈ C is algebraic over Q, there is some
positive integer N such that Na is an algebraic integer.

Solution. If a is algebraic, we have an equation an + a1an−1 +
· · · + an = 0 with ai ∈ Q. Choose a positive integer
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N such that Nais are integers for all i. Multiplying the
above equation by Nn, we get,

(Na)n + Na1(Na)n−1 + N2a2(Na)n−2 + · · ·+ Nnan = 0.

Since Nais are integers, we see that Na is an algebraic
integer. �

(b) If a ∈ Q is an algebraic integer, show that a ∈ Z.

Solution. If r ∈ Q an algebraic integer with an equation
rn + a1rn−1 + · · ·+ an = 0 where ai ∈ Z, write r = a/b
with a, b integers as usual and gcd(a, b) = 1. Then, multi-
ply the above by bn to get, an + a1an−1b + · · ·+ anbn = 0.
Notice all the terms are integers now and all the terms af-
ter the first is divisible by b and so b|an. Since gcd(a, b) =
1, this says b = 1 and thus r is an integer. �

(c) If a is an algebraic integer, show that the ring Z[a] is a
finitely generated module over Z.

Solution. If a satisfies an equation an + a1an−1 + · · ·+ an,
one checks that 1, a, a2, . . . , an−1 generate Z[a] as a Z- mod-
ule. �

(d) Show that if a, b are algebraic integers, so are a + b, ab.
(Do not attempt to find the polynomials satisfied by these.)

Solution. Very much like what we did for fields, if Z[a]
is generated by e1, . . . , em as a Z- module and similarly
v1, . . . , vm generates Z[b], one easily checks that {eivj}
generate Z[a, b] and since Z[a + b] ⊂ Z[a, b], we see that
Z[a + b] is finitely generated and being torsion free, it
is free, say of some rank p. Multiplication by a + b on
Z[a + b] can be thought of as a p× p integer matrix. Let
P(X) be the characteristic (monic) polynomial of this ma-
trix (of degree p) and then, P(a + b) = 0, showing a + b
is algebraic. Case of ab is identical. �

(4) Show that cos rπ, sin rπ are algebraic, where r ∈ Q and the
angles are in radians as usual. (De Moivre’s theorem).

Solution. De Moivre says, (cos θ + i sin θ)n = cos nθ + i sin nθ
for any n > 0. So, write r = a/n with a, n integers and
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n > 0. Since cos aπ, sin aπ are integers, taking θ = rπ above,
we get cos rπ + i sin rπ is algebraic. Similarly, taking θ =
−rπ, one gets, cos rπ − i sin rπ is algebraic. Adding, we get
2 cos rπ, 2i sin rπ are both algebraic. The rest is clear, since
i 6= 0 is also algebraic. �

(5) Let F be a finite field with say q elements.
(a) Show that the characteristic of F is a prime number p and

q = pm for some m.

Solution. We know the characteristic must be a prime num-
ber, since the only other option is characteristic zero and
then we have Q ⊂ F and in particular, F must be infinite.
If it is p, we have Fp ⊂ F and F is a finite dimensional (F
is finite!), say of dimennsion m, then clearly q = pm. �

(b) Show that aq = a for all a ∈ F.

Solution. F∗, the non-zero elements of F form an abelian
group of order q− 1 and thus for any 0 6= a ∈ F, we have
aq−1 = 1 and thus aq = a. If a = 0, this is trivial. �

(c) Let F ⊂ L be a field extension and let a ∈ L algebraic
over F. Show that aqm

= a for some positive integer m.

Solution. We look at F ⊂ F(a) ⊂ L and since a is alge-
braic, we see that [F(a) : F] is finite, say m. Then F has
qm elements and so the result follows from the previous
part. �


