HOMEWORK 10, DUE THU APR 15TH

All solutions should be with proofs, you may quote from the book or from previous home works
(1) Let A be a PID. A module D is called divisible if for any nonzero $a \in A$, the multiplication map $D \xrightarrow{a} D$ is onto.
(a) Show that K, the fraction field of A (which is naturally an A-module) is divisible. Also, if D is divisible, any quotient module of D is divisible.

Solution. Given any $x \in D$, we can take $y=x / a \in K$, since $a \neq 0$. Then $a y=x$, which says the multiplication map is onto. Let $\pi: D \rightarrow E$ be any quotient module, so π is onto. Given $x \in E$, lift it to $x^{\prime} \in D$, so that $\pi\left(x^{\prime}\right)=x$. Then, we have $y^{\prime} \in D$ with $a y^{\prime}=x^{\prime}$ and then $a \pi\left(y^{\prime}\right)=$ x.
(b) Let $N \subset M$ are modules and let $f: N \rightarrow D$ is a homomorphism, where D is divisible. Show that there is a homomorphism $g: M \rightarrow D$ such that $g(n)=f(n)$ for all $n \in N$. (Hint: You will need Zorn's lemma).

Solution. Consider the collection consisting of $\left(K, g_{K}\right)$ where $N \subset K \subset M, K$ a submodule of M and $g_{K}: K \rightarrow D$ is an A-module homomorphism such that $g_{K}(n)=f(n)$ for all $n \in N$.This set is non-empty, since it contains (N, f). We introduce a partial order on this collection by saying $\left(K, g_{K}\right) \leq\left(L, g_{L}\right)$ if $K \subset L$ and $g_{L}(k)=g_{K}(k)$ for all $k \in K$. Easy to see that this is a partial order.
Now, let $\left(K_{i}, g_{K_{i}}\right)$ be a totally ordered subset (and I will take $i \in \mathbb{N}$ for convenience of writing, but any totally ordered indexing set will do.) so that $K_{i} \subset K_{i+1}$ and $g_{K_{i+1}}(x)=g_{K_{i}}(x)$ for all $x \in K_{i}$.Then, let $L=\cup K_{i}$ and define $g: L \rightarrow D$ by $g(x)=g_{K_{i}}(x)$ if $x \in K_{i}$. You can see that the map does not depend on which K_{i} we pick containing x. Then (L, g) is in our set and is maximal for the $K_{i} \mathrm{~s}$ since it contains all of them.

So, Zorn's lemma applies and thus we have a maximal element (P, g) in our set. If $P=M$, we are done. So, assume not. Pick an $m \in M$, not in P. Let $Q=P+A m$, the submodule generated by P and m. We will extend g to Q, contradicting maximality of (P, g). There are two cases. Either the ideal $I=\{a \in A \mid a m \in P\}$ is zero or non-zero.
If $I=0$, we see that any element in Q can be uniquely written as $p+q m$ for some $p \in P, q \in A$. Then define $g^{\prime}: Q \rightarrow D$ by $g^{\prime}(p+q m)=g(p)$. I will leave you to verify that this does give an extension.
Next, assume that $I \neq 0$ and then $I=q A$ for some $0 \neq$ $q \in A$, since A is a PID. Let $q m=p \in P$. Let $x=g(p)$ and let $y \in D$ be such that $q y=x$. Define $g^{\prime}: Q \rightarrow D$ by $g^{\prime}(p+a m)=g(p)+a y$. I will leave you to check that this is well defined and thus gives an extension.
(c) If D is a divisible module and is a submodule of a module M, show that there is a submodule $N \subset M$ such that $N \oplus D \cong M$. (This means, $N+D=M, N \cap D=0$).

Solution. Consider the map $D \rightarrow D$, identity. By the previous problem, we get a homomorphism $g: M \rightarrow D$ such that $g(x)=x$ for all $x \in D$. Let $N=\operatorname{Ker} g$. Easy to check that $N+D=M$ and $N \cap D=0$.
(d) Let $M=A / p A$ where $p \in A$ is a prime. Show that M is the submodule of some divisible module.

Solution. Let K be the fraction field of A, which we know is divisible. So, $D=K / A$ is also divisible. Consider the element $x \in K / A$ which is the image of $\frac{1}{p} \in K$. We have a module homomorphism $A \rightarrow D$, by sending $1 \mapsto$ x. Since $p x=0$, we see that the kernel of this map is precisely $p A$ and thus we have an inclusion $A / p A \subset D$.
(2) We consider the filed extension, $\mathbb{Q} \subset \mathbb{R}$.
(a) Show that $\sqrt{2}, \sqrt{3} \in \mathbb{R}$ are algebraic over \mathbb{Q}. Find a polynomial $P(X) \in \mathbb{Q}[X]$ of degree 4 such that $P(\sqrt{2}+\sqrt{3})=$ 0 . Decide whether this polynomial is irreducible over \mathbb{Q}.

Solution. Since $\sqrt{2}$ is a root of $X^{2}-2 \in \mathbb{Q}[X]$, we see that it is algebraic and similarly for $\sqrt{3}$. Let $u=\sqrt{2}+$ $\sqrt{3}$. We have, $u^{2}=5+2 \sqrt{6}$. So, $\left(u^{2}-5\right)^{2}=24$, or $u^{4}-10 u^{2}+1=0$. So, we get $Q(u)=0$ where $Q(X)=$ $X^{4}-10 X^{2}+1$.
There are many ways of proving Q is irreducible. Let me do it the naive way. If it is not irreducible, either it has a linear factor or all factors of degree greater than one. In the former case, Q has a root $t \in \mathbb{Q}$. Then, $t^{2} \in \mathbb{Q}$ and t^{2} is a root of the quadratic polynomial $Y^{2}-10 Y+1$. But, quadratic formula tells us that the roots of this polynomial are $\frac{10 \pm \sqrt{100-1}}{2}$ and then $\sqrt{99}=3 \sqrt{11} \in \mathbb{Q}$, which is not true. So, Q must factor as product of two quadratic polynomials, say $X^{2}+a X+b, X^{2}+c X+d$. Multiplying, we get $X^{4}+(a+c) X^{3}+(a c+b+d) X^{2}+(a d+b c) X+$ $b d$. Thus, $c=-a, a(d-b)=0, b d=1$. If $a=0$, we have $c=0$ and $b+d=-10$ and $b d=1$, which is impossible (again by quadratic formula, since this gives $\left.b^{2}+10 b+1=0\right)$. So, $a \neq 0$ and then $b=d$. So, $b=d=1$ or $b=d=-1$. Then, we get, since $a c+b d=-10$, $-a^{2}+2=-10$ or $-a^{2}-2=-10$ and these give $a^{2}=12$ or $a^{2}=8$, neither is possible with $a \in \mathbb{Q}$.
(b) Show that $\sqrt{2}+{ }^{3} \sqrt{5}$ is algebraic over Q of degree 6 .

Solution. The idea is the same. Let $u=\sqrt{2}+5^{1 / 3}$. Then, $(u-\sqrt{2})^{3}=5$, which gives, $u^{3}-3 \sqrt{2} u^{2}+6 u-2 \sqrt{2}=$ 5. Thus, $u^{3}+6 u-5=\sqrt{2}\left(3 u^{2}+2\right)$. Squaring, we get, $\left(u^{3}+6 u-5\right)^{2}=2\left(3 u^{2}+2\right)^{2}$. Elementary algebra gives us a polynomial of degree 6 satisfied by u.
(3) We say an element in $a \in \mathbb{C}$ is an algebraic integer, if it satisfies an equation $a^{n}+a_{1} a^{n-1}+\cdots+a_{n}=0$ where $a_{i} \in \mathbb{Z}$. For example, $\sqrt{-1}, 2^{\frac{1}{5}}$ are algebraic integers.
(a) Show that if $a \in \mathbb{C}$ is algebraic over \mathbb{Q}, there is some positive integer N such that $N a$ is an algebraic integer.

Solution. If a is algebraic, we have an equation $a^{n}+a_{1} a^{n-1}+$ $\cdots+a_{n}=0$ with $a_{i} \in \mathbb{Q}$. Choose a positive integer
N such that $N a_{i}$ s are integers for all i. Multiplying the above equation by N^{n}, we get,

$$
(N a)^{n}+N a_{1}(N a)^{n-1}+N^{2} a_{2}(N a)^{n-2}+\cdots+N^{n} a_{n}=0 .
$$

Since $N a_{i}$ s are integers, we see that $N a$ is an algebraic integer.
(b) If $a \in \mathbb{Q}$ is an algebraic integer, show that $a \in \mathbb{Z}$.

Solution. If $r \in \mathbb{Q}$ an algebraic integer with an equation $r^{n}+a_{1} r^{n-1}+\cdots+a_{n}=0$ where $a_{i} \in \mathbb{Z}$, write $r=a / b$ with a, b integers as usual and $\operatorname{gcd}(a, b)=1$. Then, multiply the above by b^{n} to get, $a^{n}+a_{1} a^{n-1} b+\cdots+a_{n} b^{n}=0$. Notice all the terms are integers now and all the terms after the first is divisible by b and so $b \mid a^{n}$. Since $\operatorname{gcd}(a, b)=$ 1 , this says $b=1$ and thus r is an integer.
(c) If a is an algebraic integer, show that the ring $\mathbb{Z}[a]$ is a finitely generated module over \mathbb{Z}.

Solution. If a satisfies an equation $a^{n}+a_{1} a^{n-1}+\cdots+a_{n}$, one checks that $1, a, a^{2}, \ldots, a^{n-1}$ generate $\mathbb{Z}[a]$ as a \mathbb{Z}-module.
(d) Show that if a, b are algebraic integers, so are $a+b, a b$. (Do not attempt to find the polynomials satisfied by these.)

Solution. Very much like what we did for fields, if $\mathbb{Z}[a]$ is generated by e_{1}, \ldots, e_{m} as a \mathbb{Z} - module and similarly v_{1}, \ldots, v_{m} generates $\mathbb{Z}[b]$, one easily checks that $\left\{e_{i} v_{j}\right\}$ generate $\mathbb{Z}[a, b]$ and since $\mathbb{Z}[a+b] \subset \mathbb{Z}[a, b]$, we see that $\mathbb{Z}[a+b]$ is finitely generated and being torsion free, it is free, say of some rank p. Multiplication by $a+b$ on $\mathbb{Z}[a+b]$ can be thought of as a $p \times p$ integer matrix. Let $P(X)$ be the characteristic (monic) polynomial of this matrix (of degree p) and then, $P(a+b$) $=0$, showing $a+b$ is algebraic. Case of $a b$ is identical.
(4) Show that $\cos r \pi, \sin r \pi$ are algebraic, where $r \in \mathbb{Q}$ and the angles are in radians as usual. (De Moivre's theorem).

Solution. De Moivre says, $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ for any $n>0$. So, write $r=a / n$ with a, n integers and
$n>0$. Since $\cos a \pi, \sin a \pi$ are integers, taking $\theta=r \pi$ above, we get $\cos r \pi+i \sin r \pi$ is algebraic. Similarly, taking $\theta=$ $-r \pi$, one gets, $\cos r \pi-i \sin r \pi$ is algebraic. Adding, we get $2 \cos r \pi, 2 i \sin r \pi$ are both algebraic. The rest is clear, since $i \neq 0$ is also algebraic.
(5) Let F be a finite field with say q elements.
(a) Show that the characteristic of F is a prime number p and $q=p^{m}$ for some m.

Solution. We know the characteristic must be a prime number, since the only other option is characteristic zero and then we have $Q \subset F$ and in particular, F must be infinite. If it is p, we have $\mathbb{F}_{p} \subset F$ and F is a finite dimensional (F is finite!), say of dimennsion m, then clearly $q=p^{m}$.
(b) Show that $a^{q}=a$ for all $a \in F$.

Solution. F^{*}, the non-zero elements of F form an abelian group of order $q-1$ and thus for any $0 \neq a \in F$, we have $a^{q-1}=1$ and thus $a^{q}=a$. If $a=0$, this is trivial.
(c) Let $F \subset L$ be a field extension and let $a \in L$ algebraic over F. Show that $a^{q^{m}}=a$ for some positive integer m.
Solution. We look at $F \subset F(a) \subset L$ and since a is algebraic, we see that $[F(a): F]$ is finite, say m. Then F has q^{m} elements and so the result follows from the previous part.

