HOMEWORK 11, DUE THU APR 22ND

All solutions should be with proofs, you may quote from the book or from previous home works

- (1) Find the degrees of the splitting fields over Q for the following polynomials.
 - (a) $X^4 + 1$.

Solution. Let $u = e^{\pi/4}$. Then, the 4 roots of the polynomial are u, u^3, u^5, u^7 and so the splitting field is just $\mathbb{Q}(u)$ and the degree is 4.

(b) $X^6 + X^3 + 1$.

Solution. Let $u = e^{2\pi/9}$. Then, one easily checks that $u, u^2, u^4, u^5, u^7, u^8$ are the six roots of our polynomial. Thus, the splitting field is Q(u) and its degree is six.

(2) If *p* is a prime number, show that the splitting field of $X^p - 1$ over \mathbb{Q} has degree p - 1.

Solution. We have seen (in a homework, using Eisenstein criterion) that $X^p - 1 = (X - 1)(X^{p-1} + X^{p-2} + \dots + X + 1)$ and the second polynomial is irreducible. If $u = e^{2\pi/p}$, then all the roots of $X^p - 1$ are just $1, u, u^2, \dots, u^{p-1}$ and then the splitting field is just $\mathbb{Q}(u)$ which has degree p - 1.

(3) Let $P(X) = X^3 + aX + b$, $a, b \in \mathbb{Q}$ and let *K* its splitting field over \mathbb{Q} . Find all possible degrees of *K* over the rationals.

Solution. If P(X) is a product of linear polynomials, then all the roots are rational and so splitting field is just Q and so degree is 1.

If not, next possibility is that P = QL where Q is a degree 2 irreducible polynomial and L is linear. If $Q(X) = X^2 + rX + s$ and u is a root of Q, then the other root is -r - u and so the splitting field is just Q(u) and has degree 2.

Next case is *P* irreducible. Let *u* be a root. Then, Q(u) has degree 3. If this is the splitting field, then we have the degree.

If not, P(X) = (X - u)Q(X) with Q an irreducible polynomial of degree 2 over Q(u) and then as before, the splitting field is got by attaching a root v of Q to Q(u) and it has degree 2 over Q(u). So, the splitting field has degree 6 over Q.

(4) Let $\phi : \mathbb{Q}(2^{1/3}) \to \mathbb{Q}(2^{1/3})$ be an automorphism. Show that ϕ is the identity.

Solution. $2^{1/3}$ is a root of the irreducible polynomial $X^3 - 2$. It is easy to check that $\phi(q) = q$ for all $q \in \mathbb{Q}$, using the fact $\phi(1) = 1$. Thus, $\phi(2^{1/3})$ must be a root of $X^3 - 2$. But, the 3 roots are $2^{1/3}$, $\omega 2^{1/3}$, $\omega^2 2^{1/3}$, where $\omega = e^{2\pi/3}$. The last two are complex numbers, not real and so not contained in $\mathbb{Q}(2^{1/3})$. So, $\phi(2^{1/3}) = 2^{1/3}$. Since any element in $\mathbb{Q}(2^{1/3})$ can be written as $a + b2^{1/3} + c2^{2/3}$ with a, b, c rational, we see that ϕ must be identity.

(5) Let $\phi : \mathbb{R} \to \mathbb{R}$ be a field automorphism. Show that ϕ is the identity. (Hint: Show that if a < b, $\phi(a) < \phi(b)$.)

Solution. Let $a \in \mathbb{R}$ with $a \ge 0$. Then, we can write $a = b^2$ for some real number b and then $\phi(a) = \phi(b^2) = \phi(b)^2 \ge 0$. It is also clear that if a > 0, so is $\phi(a)$. If a, b are real numbers with a < b, then b - a > 0 and so $\phi(b) - \phi(a) = \phi(b - a) > 0$ and so $\phi(b) > \phi(a)$.

Now, as we observed in the previous problem, $\phi(q) = q$ for all $q \in \mathbb{Q}$. Now, let $r \in \mathbb{R}$. Then, for any $q \leq r$, q rational, we get, $\phi(q) = q \leq \phi(r)$. This says, $\phi(r)$ can not be less than r, since if so, pick a rational number q with $\phi(r) < q < r$ (Hope you know this), to get a contradiction. Identical argument will show that $\phi(r) \leq r$ and thus $\phi(r) = r$. Since r was arbitrary, ϕ must be identity.