HOMEWORK 12, DUE THU APR 29TH

All solutions should be with proofs, you may quote from the book or from previous home works
(1) Let $K \subset L$ be a finite extension of fields and let $K \subset M \subset L$, where M is the set of all elements in L separable over K. We have seen in class that M is a subfield of L.
(a) Show that L is purely inseparable over M. That is, either $L=M$ or characteristic is $p>0$ and if $a \in L$, then $a^{q} \in M$ for some $q=p^{n}$.

Solution. If characteristic is zero, we know every element in L is separable over K and thus $M=L$. So, assume characteristic is $p>0$. Let $a \in L$ and let $P(X)$ its irreducible polynomial over M. If $\operatorname{deg} P=1$, then $a \in M$, and we can take $q=p^{0}$. So assume $M \neq L$ and $a \notin L$, so $\operatorname{deg} P>1$.Since a can not be separable over M (if separable, it will also be separable over K and then it will be in M), we must have $P^{\prime}(X)=0$ and then the non-zero terms $a X^{r}$ in $P(X)$ must have $p \mid r$. So, choose $q=p^{n}, n$ largest, such that any non-zero term $a X^{r}$ in $P(X)$ has $q \mid r$. Then replacing these terms with $a Y^{r / q}$, we get a polynomial $Q(Y) \in M[Y]$ such that $Q\left(X^{q}\right)=P(X)$ and at least one non-zero term in $Q(Y)$ is of the form $a Y^{r}$ with $p \nmid r$. Then $Q(Y)$ is a separable polynomial over M and a^{q} is a root of this and thus $a^{q} \in M$.
(b) Show that the separable degree $[L: K]_{S}$ divides $[L: K]$. If $\frac{[L: K]}{[L: K]_{s}}=m>1$, show that the characteristic of K is a prime p and m is a power of p.

Solution. We have seen in class that $[M: K]_{s}=[M: K]$. So, suffices to show that $[L: M]_{s}=1$. That is, there is only one way to map $L \rightarrow \bar{K}$ fixing $M \subset \bar{K}$. If $\sigma: L \rightarrow \bar{K}$ is a field homomorphism such that $\sigma(x)=x$ for all $x \in M$, for any $a \in L$, we have $a^{q} \in M$ as in the previous part and $\sigma\left(a^{q}\right)=x \in M$. So, $\sigma(a)^{q}=x$ and thus, $\sigma(a)$ is some
$q^{\text {th }}$ root of $x \in \bar{K}$. But $X^{q}-x$ has a unique solution in \bar{K} and thus $\sigma(a)$ has only one choice.
For the latter part, we only need to show that $[L: M]$ is a power of p. If $a \in L$ and not in M, we have [L : $M]=[L: M(a)][M(a): M]$. But $a^{q} \in M$ will show that $[M(a): M]$ is a power of p and an easy induction will finish the proof.
(2) Let $K \subset L$ be a field extension. A map $D: L \rightarrow L$ is called a $K-$ derivation, if it is a K-linear map and $D(a b)=a D(b)+b D(a)$ (Leibniz formula) for all $a, b \in L$.
(a) Show that $D(x)=0$ for all $x \in K$.

Solution. We show first (and you have seen this earlier) that $D(1)=0$.

$$
D(1)=D(1 \cdot 1)=1 D(1)+1 D(1)=2 D(1)
$$

and thus $D(1)=0$.
Next, we use the fact that D is K-linear. If $x \in K, D(x)=$ $D(x \cdot 1)=x D(1)=0$.
(b) If D_{1}, D_{2} are derivations, show that $D_{1}+D_{2}$ is a derivation and $a D$ for $a \in L$ defined as $(a D)(x)=a D(x)$ for $x \in L$ are derivations. Thus, show that $\mathbb{T}=$ set of all derivations form an L-vector space.
Solution. This is straightforward.
(c) Assume L is a finite extension of K. Show that $\mathbb{T}=0$ if and only if L is a separable extension of K.

Solution. First, assume that L is a separable extension of K and let $D: L \rightarrow L$ be a K-derivation. Let $a \in L$ and $P(X) \in K[X]$ its irreducible polynomial. Since $P(a)=0$, we have $D(P(a))=0$. Using Leibniz formula one easily checks that $D(P(a))=P^{\prime}(a) D(a)\left(P^{\prime}(X)\right.$ is the derivative of $P)$. Since the extension is separable, $P^{\prime}(a) \neq 0$ and then $D(a)=0$.
Conversely, assume that L is not a separable extension. Then, we will show that $\mathbb{T} \neq 0$. This can happen only in characteristic $p>0$. Let $M \subset L$ be the set of all elements in L separable over K as in the previous problem. We are assuming $M \neq L$ and thus one easily checks that there is
$M \subset F \subset L=F(a), a \notin F, a^{p} \in F$, for a suitable subfield F. We will show that there is a non-zero F-derivation of L (which is clearly a K-derivation, since $K \subset F$). Notice that $L=F[X] /\left(X^{p}-b\right)$, where $b=a^{p} \in F$. Any element in L can be written as $A(a)$ for some $A \in F[X]$ and define $D: L \rightarrow L$ by $D(A(a))=A^{\prime}(a)$ (check that this is well defined) and then $D(a)=1$ and it is an F-derivation.
(3) A field K is called perfect if either its characteristic is zero or it is a prime number p and every element in K has a $p^{\text {th }}$ root. Show that, if K is perfect, any finite extension of K is separable.

Solution. First, notice that if every element in K has a $p^{\text {th }}$ root in K, then repeating this, every element has a $q^{\text {th }}$ root for $q=p^{n}$. If a is not separable over K, as in the first problem, its irreducible polynomial $P(X) \in K[X]$ is of the form $P(X)=Q\left(X^{q}\right)$ for some $q=p^{n}$ and Q is separable over K. Writing $Q(T)=T^{m}+a_{1} T^{m-1}+\cdots+a_{m}$ we let $a_{i}=b_{i}^{q}$. Then, $Q\left(X^{q}\right)=X^{q m}+b_{1}^{q} X^{q(m-1)}+\cdots+b_{m}^{q}=\left(X^{m}+b_{1} X^{m-1}+\right.$ $\left.\cdots+b_{m}\right)^{q}$ and thus $P(X)$ is not irreducible unless $q=1$, which says that a is in fact separable.
(4) Let K be a finite field with q elements.
(a) Let $G(X)=X^{q^{n}}-X \in K[X]$ and let L be the splitting field of G. Show that $[L: K]=n$.

Solution. Notice that G is separable, since $G^{\prime}=-1$. Thus it has q^{n} distinct roots and so L must have at least q^{n} elements. So, $[L: K] \geq n$. If $M \subset L$ are the set of elements which are root s of G, I claim, it is a field. If a, b are roots of G, then $a^{q^{n}}=a, b^{q^{n}}=b$ and then $(a+b)^{q^{n}}=a^{q^{n}}+b^{q^{n}}=$ $a+b$. Similarly, for $a b$ and $1 / a$ if $a \neq 0$. So, every element of L satisfies G. If $[L: K]=m>n$, then, since $L-\{0\}$ is a cyclic group of order $q^{m}-1$, there is an element $a \in L$ whose order is $q^{m}-1$ and then $a^{q^{n}} \neq a$.
(b) Let $f(X) \in K[X]$ be irreducible. Show that f divides $X^{q^{n}}-X$ if and only if $\operatorname{deg} f$ divides n.

Solution. Let $\operatorname{deg} f=n$. Since f is irreducible, $K[X] /(f(X))=$ L is field and $[L: K]=n$. Thus L has q^{n} elements and so $a^{q^{n}}=a$ for any $a \in L$. On the other hand, f has a root $a \in L$ and so $f(a)=0$ and $a^{q^{n}}=a$ which says f divides $X^{q^{n}}-X$, since f is irreducible.
Conversely, assume that f divides $G(X)=X^{q^{n}}-X$ and let L be the splitting field of G. If a is a root of f, then clearly, $a^{q^{n}}=a$ and so we have $K \subset K(a) \subset L .[K(a)$: $K]=\operatorname{deg} f$ and $[L: K]=n$ and so $\operatorname{deg} f$ divides n.
(c) Show that,

$$
X^{q^{n}}-X=\prod_{d \mid n} \prod_{f_{d}} f_{d}(X)
$$

where $f_{d}(X) \in K[X]$ are irreducible of degree d and monic in X.

Solution. This is clear from the previous part.
(5) Let $K \subset \bar{K}$ be a fixed inclusion of a field in an algebraic closure. Let $P(X) \in K[X]$ be any polynomial and let $L=K\left(a_{1}, \ldots, a_{n}\right) \subset$ \bar{K}, where $a_{i} s$ are the roots of P, so L is a splitting field. If $\sigma: L \rightarrow \bar{K}$ is any homomorphism with $\sigma(x)=x$ for all $x \in K$, show that $\sigma(L)=L$ and thus it is an element of $G(L / K)$ as defined in class.
Solution. If σ is as in the problem, $\sigma\left(a_{i}\right)$ must be a root of $P(X)$ and thus must be one of the a_{i} s. So, σ takes each a_{i} to L and thus, $\sigma(L) \subset L$. But σ is a K-linear map, since $\sigma(x)=x$ for all $x \in K$ and L is a finite dimensional vector space over K and so $\sigma(L)=L$.

