HOMEWORK 12, DUE THU APR 29TH

All solutions should be with proofs, you may quote from the book or from previous home works

- (1) Let $K \subset L$ be a finite extension of fields and let $K \subset M \subset L$, where *M* is the set of all elements in *L* separable over *K*. We have seen in class that *M* is a subfield of *L*.
 - (a) Show that *L* is purely inseparable over *M*. That is, either L = M or characteristic is p > 0 and if $a \in L$, then $a^q \in M$ for some $q = p^n$.

Solution. If characteristic is zero, we know every element in L is separable over K and thus M = L. So, assume characteristic is p > 0. Let $a \in L$ and let P(X) its irreducible polynomial over M. If deg P = 1, then $a \in M$, and we can take $q = p^0$. So assume $M \neq L$ and $a \notin L$, so deg P > 1.Since *a* can not be separable over *M* (if separable, it will also be separable over *K* and then it will be in *M*), we must have P'(X) = 0 and then the non-zero terms aX^r in P(X) must have p|r. So, choose $q = p^n$, n largest, such that any non-zero term aX^r in P(X) has q|r. Then replacing these terms with $aY^{r/q}$, we get a polynomial $Q(Y) \in M[Y]$ such that $Q(X^q) = P(X)$ and at least one non-zero term in Q(Y) is of the form aY^r with p / r. Then Q(Y) is a separable polynomial over M and a^q is a root of this and thus $a^q \in M$.

(b) Show that the separable degree [L : K]_s divides [L : K]. If [L:K]_s = m > 1, show that the characteristic of K is a prime p and m is a power of p.

Solution. We have seen in class that $[M : K]_s = [M : K]$. So, suffices to show that $[L : M]_s = 1$. That is, there is only one way to map $L \to \overline{K}$ fixing $M \subset \overline{K}$. If $\sigma : L \to \overline{K}$ is a field homomorphism such that $\sigma(x) = x$ for all $x \in M$, for any $a \in L$, we have $a^q \in M$ as in the previous part and $\sigma(a^q) = x \in M$. So, $\sigma(a)^q = x$ and thus, $\sigma(a)$ is some q^{th} root of $x \in \overline{K}$. But $X^q - x$ has a unique solution in \overline{K} and thus $\sigma(a)$ has only one choice.

For the latter part, we only need to show that [L : M] is a power of p. If $a \in L$ and not in M, we have [L : M] = [L : M(a)][M(a) : M]. But $a^q \in M$ will show that [M(a) : M] is a power of p and an easy induction will finish the proof.

- (2) Let $K \subset L$ be a field extension. A map $D : L \to L$ is called a *K*-derivation, if it is a *K*-linear map and D(ab) = aD(b) + bD(a) (Leibniz formula) for all $a, b \in L$.
 - (a) Show that D(x) = 0 for all $x \in K$.

Solution. We show first (and you have seen this earlier) that D(1) = 0.

$$D(1) = D(1 \cdot 1) = 1D(1) + 1D(1) = 2D(1),$$

and thus D(1) = 0.

Next, we use the fact that *D* is *K*-linear. If $x \in K$, $D(x) = D(x \cdot 1) = xD(1) = 0$.

(b) If D_1, D_2 are derivations, show that $D_1 + D_2$ is a derivation and aD for $a \in L$ defined as (aD)(x) = aD(x) for $x \in L$ are derivations. Thus, show that \mathbb{T} = set of all derivations form an *L*-vector space.

Solution. This is straightforward.

(c) Assume *L* is a finite extension of *K*. Show that $\mathbb{T} = 0$ if and only if *L* is a separable extension of *K*.

Solution. First, assume that *L* is a separable extension of *K* and let $D : L \to L$ be a *K*-derivation. Let $a \in L$ and $P(X) \in K[X]$ its irreducible polynomial. Since P(a) = 0, we have D(P(a)) = 0. Using Leibniz formula one easily checks that D(P(a)) = P'(a)D(a) (P'(X) is the derivative of *P*). Since the extension is separable, $P'(a) \neq 0$ and then D(a) = 0.

Conversely, assume that *L* is not a separable extension. Then, we will show that $\mathbb{T} \neq 0$. This can happen only in characteristic p > 0. Let $M \subset L$ be the set of all elements in *L* separable over *K* as in the previous problem. We are assuming $M \neq L$ and thus one easily checks that there is $M \subset F \subset L = F(a), a \notin F, a^p \in F$, for a suitable subfield *F*. We will show that there is a non-zero *F*-derivation of *L* (which is clearly a *K*-derivation, since $K \subset F$). Notice that $L = F[X]/(X^p - b)$, where $b = a^p \in F$. Any element in *L* can be written as A(a) for some $A \in F[X]$ and define $D : L \to L$ by D(A(a)) = A'(a) (check that this is well defined) and then D(a) = 1 and it is an *F*-derivation.

(3) A field *K* is called *perfect* if either its characteristic is zero or it is a prime number *p* and every element in *K* has a *p*th root. Show that, if *K* is perfect, any finite extension of *K* is separable.

Solution. First, notice that if every element in *K* has a p^{th} root in *K*, then repeating this, every element has a q^{th} root for $q = p^n$. If *a* is not separable over *K*, as in the first problem, its irreducible polynomial $P(X) \in K[X]$ is of the form $P(X) = Q(X^q)$ for some $q = p^n$ and *Q* is separable over *K*. Writing $Q(T) = T^m + a_1 T^{m-1} + \cdots + a_m$ we let $a_i = b_i^q$. Then, $Q(X^q) = X^{qm} + b_1^q X^{q(m-1)} + \cdots + b_m^q = (X^m + b_1 X^{m-1} + \cdots + b_m)^q$ and thus P(X) is not irreducible unless q = 1, which says that *a* is in fact separable.

- (4) Let *K* be a finite field with *q* elements.
 - (a) Let $G(X) = X^{q^n} X \in K[X]$ and let *L* be the splitting field of *G*. Show that [L:K] = n.

Solution. Notice that *G* is separable, since G' = -1. Thus it has q^n distinct roots and so *L* must have at least q^n elements. So, $[L : K] \ge n$. If $M \subset L$ are the set of elements which are roots of *G*, I claim, it is a field. If *a*, *b* are roots of *G*, then $a^{q^n} = a, b^{q^n} = b$ and then $(a + b)^{q^n} = a^{q^n} + b^{q^n} = a + b$. Similarly, for *ab* and 1/a if $a \ne 0$. So, every element of *L* satisfies *G*. If [L : K] = m > n, then, since $L - \{0\}$ is a cyclic group of order $q^m - 1$, there is an element $a \in L$ whose order is $q^m - 1$ and then $a^{q^n} \ne a$.

(b) Let $f(X) \in K[X]$ be irreducible. Show that f divides $X^{q^n} - X$ if and only if deg f divides n.

Solution. Let deg f = n. Since f is irreducible, K[X]/(f(X)) = L is field and [L : K] = n. Thus L has q^n elements and so $a^{q^n} = a$ for any $a \in L$. On the other hand, f has a root $a \in L$ and so f(a) = 0 and $a^{q^n} = a$ which says f divides $X^{q^n} - X$, since f is irreducible. Conversely, assume that f divides $G(X) = X^{q^n} - X$ and let L be the splitting field of G. If a is a root of f, then clearly, $a^{q^n} = a$ and so we have $K \subset K(a) \subset L$. $[K(a) : K] = \deg f$ and [L : K] = n and so deg f divides n.

(c) Show that,

$$X^{q^n} - X = \prod_{d|n} \prod_{f_d \text{ irr}} f_d(X),$$

where $f_d(X) \in K[X]$ are irreducible of degree *d* and monic in *X*.

Solution. This is clear from the previous part.

(5) Let $K \subset \overline{K}$ be a fixed inclusion of a field in an algebraic closure. Let $P(X) \in K[X]$ be any polynomial and let $L = K(a_1, \ldots, a_n) \subset \overline{K}$, where a_i s are the roots of P, so L is a splitting field. If $\sigma : L \to \overline{K}$ is any homomorphism with $\sigma(x) = x$ for all $x \in K$, show that $\sigma(L) = L$ and thus it is an element of G(L/K) as defined in class.

Solution. If σ is as in the problem, $\sigma(a_i)$ must be a root of P(X) and thus must be one of the a_i s. So, σ takes each a_i to L and thus, $\sigma(L) \subset L$. But σ is a K-linear map, since $\sigma(x) = x$ for all $x \in K$ and L is a finite dimensional vector space over K and so $\sigma(L) = L$.