
HOMEWORK 3, DUE THU FEB 18TH

All solutions should be with proofs, you may quote from the book

(1) Let G be a group, H, K subgroups.
(a) If H is normal, show that HK is a subgroup of G.

Solution. Using lemma 2.5.1, suffices to show that HK =
KH. We will show that HK ⊂ KH, the reverse inclusion
being similar. So, let hk ∈ HK, with h ∈ H, k ∈ K. Then,
hk = (kk−1)hk = k(k−1hk). But k−1hk ∈ H, since H is
normal. �

(b) If H, K are both normal, show that HK is normal.

Solution. Let a ∈ G, h ∈ H, k ∈ K. Then, a(hk)a−1 =
(aha−1)(aka−1 and since aha−1 ∈ H, aka−1 ∈ K, we see
that the last term is in HK. �

(c) If H, K are both normal and H ∩ K = {e}, show that for
any h ∈ H, k ∈ K, hk = kh.

Solution. Let h ∈ H, k ∈ K. Then hkh−1k−1 = (hkh−1)k ∈
K, since hkh−1 ∈ K. Similarly, hkh−1k−1 = h(kh−1k−1) ∈
H since kh−1k−1 ∈ H. Thus it is in both H and K and
thus it must be the identity. So, hk = kh. �

(2) (a) Let G be a group and H a subgroup of G. Define N(H) =
{g ∈ G|gHg−1 = H}. Show that H is a normal subgroup
of N(H). (N(H) is called the Normalizer of H in G.)

Solution. First we show that N(H) is a subgroup of G.
If g, g′ ∈ N(H), then gg′H(gg′)−1 = g(g′Hg−1)g−1 =
gHg−1 = H. Equally trivial to show that if g ∈ N(H),
then g−1 ∈ N(H). Thus N(H) is a subgroup of G.
Next we show that H is a normal subgroup of N(H). iLet
g ∈ N(H) and then by definition, gHg−1 = H and this
proves what we need. �
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(b) Let G be a group and let Z(G) = {g ∈ G|gx = xg for all x ∈
G}, called the center of G. Show that Z(G) is a normal
subgroup of G.

Solution. Let y ∈ G and g ∈ Z(G). Then, ygy−1 = gyy−1,
since yg = gy. This is just g ∈ Z(G). �

(c) Let G = GL(n, R), the invertible n× n matrices. Describe
Z(G) explicitly.

Solution. This is a fact usually proved in linear algebra
courses. The center is just the subgroup of scalar matri-
ces, aI, a a non-zero real number and I the identity ma-
trix. �

(3) For a set S, we as usual denote the group A(S), set of all one-
to-one onto maps from S to itself, with composition as the
group operation. Let G be a group and f : G → A(S) a group
homomorphism. We shorten f (g)(s) as just gs, when f is un-
derstood. (This is usually called an action of G on S.) We
give below a few maps which you should decide whether are
group homomorphisms and if so, find its kernel.
(a) Consider the map f : G → A(G), given as f (g) = φg

where φg(h) = gh.

Solution. We attempt to check the homomorphism prop-
erty. f (gh) = φgh where φgh(x) = ghx for any x ∈
G. While, φgφh(x) = φg(hx) = ghx. Thus, f (gh) =
f (g) f (h). So, it is a group homomorphism. If g ∈ ker f ,
then f (g) is the identity in A(G), so f (g)(x) = x, which
says gx = x and then by cancellation, g = e. So ker f is
just the trivial group {e}. �

(b) Consider f : G → A(G) given as f (g) = ψg where
ψg(h) = ghg−1.

Solution. Again, we c try to see whether f (gh) = f (g) f (h)
for g, h ∈ G. That is, ψgh = ψgψg. For any x ∈ G, we have
ψgh(x) = (gh)x(gh)−1 = ghxh1g−1. On the other hand,
ψgψh(x) = ψg(hxh−1) = ghxh−1g−1. This says, f is in-
deed a homomorphism.
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If g ∈ ker f , we must have gxg−1 = x for all x ∈ G. This
just says gx = xg for all x and this was just our definition
of the center. So, ker f = Z(G). �

(c) Let H be a subgroup of G and let L be the left cosets of H
in G. Let f : G → A(L) be defined as f (g) = θg where
θg(aH) = gaH.

Solution. We check f (gh) = f (g) f (h), that θgh = θgθh.
θgh(xH) = ghxH for any x ∈ G, while, θgθh(xH) =
θg(hxH) = ghxH, so f is indeed a group homomorphism.
Let g ∈ ker f . This says, gaH = aH for all a ∈ G. So,
a−1gaH = H for all a. This just says a−1ga ∈ H for all
a which is same as saying g ∈ aHa−1 for all a. Thus
ker f = ∩a∈GaHa−1. �

(4) Let G, H, K be groups.

Solution. The arguments for the following problem is com-
pletely straight forward. If you have difficulties, we will dis-
cuss it. �

(a) Let f : G → H, g : G → K be group homomorphisms.
Show that the map φ : G → H × K, φ(a) = ( f (a), g(a))
is a group homomorphism.

(b) Let f : H → G, g : K → G be group homomorphisms.
Show by an example that the map φ : H × K → G given
by φ(a, b) = f (a)g(b) may not be a group homomor-
phism, but it is if G is abelian.

(c) Show that the map f : G → G, f (a) = a−1 may not be a
group homomorphism, but it is if G is abelian.

(5) Let G be a group and S ⊂ G, a subset. We write Ŝ = ∩S⊂H H,
intersection of all subgroups of G containing S.
(a) Let S′ = {s−1|s ∈ S}. Show that any element of the

form s1s2 · · · sn for some n with si ∈ S ∪ S′ is in Ŝ and
conversely every element in Ŝ is of this form.

Solution. Because of the above property, Ŝ is called the
group generated by S.
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We show sis2 · · · sn ∈ Ŝ by induction on n. If n = 1,
then either s1 ∈ S and since the intersection is taken over
groups with S ⊂ H, we get s1 ∈ Ŝ, or s−1

1 ∈ S and then
again s−1

1 ∈ Ŝ, but the latter is a subgroup and thus s1 ∈
Ŝ.
Assume proved for n− 1 and let us prove for n. So, given
s1s2 · · · sn, we know a = s1s2 · · · sn−1 ∈ Ŝ. As before,
sn ∈ Ŝ and thus asn ∈ Ŝ, being a group.
Let T = {s1s2 · · · sn|si ∈ S∪ S′}. We want to show T = Ŝ.
Since T ⊂ Ŝ and S ⊂ T, we only need to show that
T is a subgroup. As usual we check the two required
properties. If a = sis2 · · · sn, b = t1t2 · · · tm ∈ T, with
si, tj ∈ S ∪ S′, clearly ab = s1s2 · · · snt1t2 · · · tm ∈ T. Sim-
ilarly, if a is as above, then a−1 = s−1

n · · · s−1
1 and since

s−1
i ∈ SUS′, a−1 ∈ T. �

(b) Let S = {xyx−1y−1|x, y ∈ G} (these elements are called
commutators). Show that Ŝ (which is usually written as
[G, G] and called the commutator subgroup) is a normal
subgroup of G.

Solution. First notice that if s ∈ S, then s−1 ∈ S, so any
element a ∈ [G, G] can be written as a = s1s2 · · · sn for
si ∈ S, from the previous part of the problem. We need
to show that for any g ∈ G, gag−1 ∈ [G, G]. But, gag−1 =
g(s1s2 · · · sn)g−1 = (gs1g−1)(gs2g−1) · · · (gsng−1) and so
suffices to show that for any s ∈ S, gsg−1 ∈ [G, G]. So, let
s = xyx−1y−1.

gsg−1 = ((gx)y(gx)−1y−1)(ygxx−1y−1g−1).

The first term in paranthesis is in S and the second term
is ygy−1g−1 ∈ S too. So, their product is in [G, G]. �

(c) Show that G/Ŝ is abelian.

Solution. We have an onto group homomorphism π : G →
G/[G, G] and if a, b ∈ G/[G, G], we can find x, y ∈ G
such that π(x) = a, π(y) = b. Since xyx−1y−1 ∈ [G, G],
the image of this element in G/[G, G] is the identity e′ in
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this group. So,

e′ = π(xyx−1y−1) = π(x)π(y)π(x)−1π(y)−1 = aba−1b−1

and this says, ab = ba. a, b are arbitrary and so G/[G, G]
is abelian. �

(d) If H is any normal subgroup of G such that G/H is abelian,
show that Ŝ ⊂ H.

Solution. Consider the onto group homomorphism p :
G → G/H. If s = xyx−1y−1, p(s) = e′,, the identity
of G/H, since it is abelian. Thus the kernel of p contains
all such s and then it contains [G, G] �

(6) (a) Let G be a group and Z its center. If G/Z is cyclic, show
that Z = G.

Solution. As usual, we consider the onto group homo-
morphism, π : G → G/Z and let b ∈ G/Z be a gen-
erator (G/Z is cyclic). Lift it to a ∈ G. Then, any element
x ∈ G is of the form x = akz where k ∈ Z and z ∈ Z
and can be seen as follows. We know that π(x) = bk

for some k and then, π(a−kx) = b−kbk, identity of G/Z
and so this element belongs to the kernel which is Z. So,
a−kx = z ∈ Z and then, x = akz. Now, take two elements
x = akz1, y = alz2, where k, l are integers and z1, z2 ∈ Z.
Then,

xy = akz1alz2 = akalz1z2.

Now use again z1z2 = z2z1, akal = alak etc. to get xy =
yx. �

(b) Show that any group of order 9 is abelian.

Solution. This is the hardest of the problems and the state-
ment is true for any group of order p2, p any prime. Since
the proof is similar, I shall give a proof of the general re-
sult. If you fail to finish this problem, do not despair.
So, let G be a group with o(G) = p2. By Lagrange, every
element in G must have order 1, p or p2, since this order
must divide o(G). The only element with order 1 is e. If
it had an element of order p2, then it must be the cyclic
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group and so we are done. Thus we may assume every
element other than e has order p.
Let S = {H1, . . . , Hn}, distinct subgroups (necessarily
cyclic) of order p. In a group of order p we have seen that
any non-identity element generates it and so Hi ∩ Hj =
{e}. Since every non-identity element has order p, they
must be in one of the Hi. Thus, we see that G − {e} =
∪(Hi − {e}), a disjoint union. Since each Hi − {e} has
exactly p− 1 elements, we get p2 − 1 = n(p− 1) and so
n = p + 1.
Next, we look at the map φ : G → A(S) (the group of
one-to-one onto maps from S to itself, with composition
as the binary operation) given as φ(g)(Hi) = gHig−1.
Easy to see that this is a group homomorphism. Let N =
ker φ. Then G/N = φ(G) and o(G/N) = o(G)/o(N) =
o(φ(G)) = d. So, d divides p2 and o(A(S)) = (p + 1)!.
Since gcd(p2, (p + 1)!) = p, we see that d = 1 or d = p.
This says N 6= {e}. Every element g of N has thus the
property, gHig−1 = Hi for all i. If necessary, we restrict to
a subgroup of N (if N = G) and assume o(N) = 3. This
says, we have a map fi : N → Aut(Hi) (why?) given
as fi(g)(x) = gxg−1 for g ∈ N, x ∈ Hi. But, o(Hi) = p
and thus o(Aut(Hi)) = p−, so fi is not one-to-one. But,
o(N) = 3, so its subgroups are just the trivial groups and
thus kernel of fi is all of N. This says, N ⊂ Z(G) and
then the previous problem finishes the proof.
We will give a slightly better proof after we do class equa-
tion. �


