HOMEWORK 3, DUE THU FEB 18TH

All solutions should be with proofs, you may quote from the book
(1) Let G be a group, H, K subgroups.
(a) If H is normal, show that $H K$ is a subgroup of G.

Solution. Using lemma 2.5.1, suffices to show that $H K=$ $K H$. We will show that $H K \subset K H$, the reverse inclusion being similar. So, let $h k \in H K$, with $h \in H, k \in K$. Then, $h k=\left(k k^{-1}\right) h k=k\left(k^{-1} h k\right)$. But $k^{-1} h k \in H$, since H is normal.
(b) If H, K are both normal, show that $H K$ is normal.

Solution. Let $a \in G, h \in H, k \in K$. Then, $a(h k) a^{-1}=$ $\left(a h a^{-1}\right)\left(a k a^{-1}\right.$ and since $a h a^{-1} \in H, a k a^{-1} \in K$, we see that the last term is in HK.
(c) If H, K are both normal and $H \cap K=\{e\}$, show that for any $h \in H, k \in K, h k=k h$.

Solution. Let $h \in H, k \in K$. Then $h k h^{-1} k^{-1}=\left(h k h^{-1}\right) k \in$ K, since $h k h^{-1} \in K$. Similarly, $h k h^{-1} k^{-1}=h\left(k h^{-1} k^{-1}\right) \in$ H since $k h^{-1} k^{-1} \in H$. Thus it is in both H and K and thus it must be the identity. So, $h k=k h$.
(2) (a) Let G be a group and H a subgroup of G. Define $N(H)=$ $\left\{g \in G \mid g \mathrm{Hg}^{-1}=H\right\}$. Show that H is a normal subgroup of $N(H)$. ($N(H)$ is called the Normalizer of H in G.)

Solution. First we show that $N(H)$ is a subgroup of G. If $g, g^{\prime} \in N(H)$, then $g g^{\prime} H\left(g g^{\prime}\right)^{-1}=g\left(g^{\prime} H g^{-1}\right) g^{-1}=$ $g H g^{-1}=H$. Equally trivial to show that if $g \in N(H)$, then $g^{-1} \in N(H)$. Thus $N(H)$ is a subgroup of G.
Next we show that H is a normal subgroup of $N(H)$. iLet $g \in N(H)$ and then by definition, $g H^{-1}=H$ and this proves what we need.
(b) Let G be a group and let $Z(G)=\{g \in G \mid g x=x g$ for all $x \in$ $G\}$, called the center of G. Show that $Z(G)$ is a normal subgroup of G.

Solution. Let $y \in G$ and $g \in Z(G)$. Then, $y g y^{-1}=g y y^{-1}$, since $y g=g y$. This is just $g \in Z(G)$.
(c) Let $G=G L(n, \mathbb{R})$, the invertible $n \times n$ matrices. Describe $Z(G)$ explicitly.

Solution. This is a fact usually proved in linear algebra courses. The center is just the subgroup of scalar matrices, $a I, a$ a non-zero real number and I the identity matrix.
(3) For a set S, we as usual denote the group $A(S)$, set of all one-to-one onto maps from S to itself, with composition as the group operation. Let G be a group and $f: G \rightarrow A(S)$ a group homomorphism. We shorten $f(g)(s)$ as just $g s$, when f is understood. (This is usually called an action of G on S.) We give below a few maps which you should decide whether are group homomorphisms and if so, find its kernel.
(a) Consider the map $f: G \rightarrow A(G)$, given as $f(g)=\phi_{g}$ where $\phi_{g}(h)=g h$.

Solution. We attempt to check the homomorphism property. $f(g h)=\phi_{g h}$ where $\phi_{g h}(x)=g h x$ for any $x \in$ G. While, $\phi_{g} \phi_{h}(x)=\phi_{g}(h x)=g h x$. Thus, $f(g h)=$ $f(g) f(h)$. So, it is a group homomorphism. If $g \in \operatorname{ker} f$, then $f(g)$ is the identity in $A(G)$, so $f(g)(x)=x$, which says $g x=x$ and then by cancellation, $g=e$. So $\operatorname{ker} f$ is just the trivial group $\{e\}$.
(b) Consider $f: G \rightarrow A(G)$ given as $f(g)=\psi_{g}$ where $\psi_{g}(h)=g h g^{-1}$.

Solution. Again, we c try to see whether $f(g h)=f(g) f(h)$ for $g, h \in G$. That is, $\psi_{g h}=\psi_{g} \psi_{g}$. For any $x \in G$, we have $\psi_{g h}(x)=(g h) x(g h)^{-1}=g h x h^{1} g^{-1}$. On the other hand, $\psi_{g} \psi_{h}(x)=\psi_{g}\left(h x h^{-1}\right)=g h x h^{-1} g^{-1}$. This says, f is indeed a homomorphism.

If $g \in \operatorname{ker} f$, we must have $g x g^{-1}=x$ for all $x \in G$. This just says $g x=x g$ for all x and this was just our definition of the center. So, $\operatorname{ker} f=Z(G)$.
(c) Let H be a subgroup of G and let L be the left cosets of H in G. Let $f: G \rightarrow A(L)$ be defined as $f(g)=\theta_{g}$ where $\theta_{g}(a H)=g a H$.

Solution. We check $f(g h)=f(g) f(h)$, that $\theta_{g h}=\theta_{g} \theta_{h}$. $\theta_{g h}(x H)=g h x H$ for any $x \in G$, while, $\theta_{g} \theta_{h}(x H)=$ $\theta_{g}(h x H)=g h x H$, so f is indeed a group homomorphism. Let $g \in \operatorname{ker} f$. This says, $g a H=a H$ for all $a \in G$. So, $a^{-1} g a H=H$ for all a. This just says $a^{-1} g a \in H$ for all a which is same as saying $g \in a H a^{-1}$ for all a. Thus $\operatorname{ker} f=\cap_{a \in G} a H a^{-1}$.
(4) Let G, H, K be groups.

Solution. The arguments for the following problem is completely straight forward. If you have difficulties, we will discuss it.
(a) Let $f: G \rightarrow H, g: G \rightarrow K$ be group homomorphisms. Show that the map $\phi: G \rightarrow H \times K, \phi(a)=(f(a), g(a))$ is a group homomorphism.
(b) Let $f: H \rightarrow G, g: K \rightarrow G$ be group homomorphisms. Show by an example that the map $\phi: H \times K \rightarrow G$ given by $\phi(a, b)=f(a) g(b)$ may not be a group homomorphism, but it is if G is abelian.
(c) Show that the map $f: G \rightarrow G, f(a)=a^{-1}$ may not be a group homomorphism, but it is if G is abelian.
(5) Let G be a group and $S \subset G$, a subset. We write $\hat{S}=\cap_{S \subset H} H$, intersection of all subgroups of G containing S.
(a) Let $S^{\prime}=\left\{s^{-1} \mid S \in S\right\}$. Show that any element of the form $s_{1} s_{2} \cdots s_{n}$ for some n with $s_{i} \in S \cup S^{\prime}$ is in \hat{S} and conversely every element in \hat{S} is of this form.

Solution. Because of the above property, \hat{S} is called the group generated by S.

We show $s_{i} s_{2} \cdots s_{n} \in \hat{S}$ by induction on n. If $n=1$, then either $s_{1} \in S$ and since the intersection is taken over groups with $S \subset H$, we get $s_{1} \in \hat{S}$, or $s_{1}^{-1} \in S$ and then again $s_{1}^{-1} \in \hat{S}$, but the latter is a subgroup and thus $s_{1} \in$ S.

Assume proved for $n-1$ and let us prove for n. So, given $s_{1} s_{2} \cdots s_{n}$, we know $a=s_{1} s_{2} \cdots s_{n-1} \in \hat{S}$. As before, $s_{n} \in \hat{S}$ and thus $a s_{n} \in \hat{S}$, being a group.
Let $T=\left\{s_{1} s_{2} \cdots s_{n} \mid s_{i} \in S \cup S^{\prime}\right\}$. We want to show $T=\hat{S}$.
Since $T \subset \hat{S}$ and $S \subset T$, we only need to show that T is a subgroup. As usual we check the two required properties. If $a=s_{i} s_{2} \cdots s_{n}, b=t_{1} t_{2} \cdots t_{m} \in T$, with $s_{i}, t_{j} \in S \cup S^{\prime}$, clearly $a b=s_{1} s_{2} \cdots s_{n} t_{1} t_{2} \cdots t_{m} \in T$. Similarly, if a is as above, then $a^{-1}=s_{n}^{-1} \cdots s_{1}^{-1}$ and since $s_{i}^{-1} \in S U S^{\prime}, a^{-1} \in T$.
(b) Let $S=\left\{x y x^{-1} y^{-1} \mid x, y \in G\right\}$ (these elements are called commutators). Show that \hat{S} (which is usually written as $[G, G]$ and called the commutator subgroup) is a normal subgroup of G.

Solution. First notice that if $s \in S$, then $s^{-1} \in S$, so any element $a \in[G, G]$ can be written as $a=s_{1} s_{2} \cdots s_{n}$ for $s_{i} \in S$, from the previous part of the problem. We need to show that for any $g \in G, g a g^{-1} \in[G, G]$. But, $g a g^{-1}=$ $g\left(s_{1} s_{2} \cdots s_{n}\right) g^{-1}=\left(g s_{1} g^{-1}\right)\left(g s_{2} g^{-1}\right) \cdots\left(g s_{n} g^{-1}\right)$ and so suffices to show that for any $s \in S, g s g^{-1} \in[G, G]$. So, let $s=x y x^{-1} y^{-1}$.

$$
g s g^{-1}=\left((g x) y(g x)^{-1} y^{-1}\right)\left(y g x x^{-1} y^{-1} g^{-1}\right)
$$

The first term in paranthesis is in S and the second term is $y g y^{-1} g^{-1} \in S$ too. So, their product is in $[G, G]$.
(c) Show that G / \hat{S} is abelian.

Solution. We have an onto group homomorphism $\pi: G \rightarrow$ $G /[G, G]$ and if $a, b \in G /[G, G]$, we can find $x, y \in G$ such that $\pi(x)=a, \pi(y)=b$. Since $x y x^{-1} y^{-1} \in[G, G]$, the image of this element in $G /[G, G]$ is the identity e^{\prime} in
this group. So,

$$
e^{\prime}=\pi\left(x y x^{-1} y^{-1}\right)=\pi(x) \pi(y) \pi(x)^{-1} \pi(y)^{-1}=a b a^{-1} b^{-1}
$$

and this says, $a b=b a . a, b$ are arbitrary and so $G /[G, G]$ is abelian.
(d) If H is any normal subgroup of G such that G / H is abelian, show that $\hat{S} \subset H$.

Solution. Consider the onto group homomorphism p : $G \rightarrow G / H$. If $s=x y x^{-1} y^{-1}, p(s)=e^{\prime}$, , the identity of G / H, since it is abelian. Thus the kernel of p contains all such s and then it contains $[G, G]$
(6) (a) Let G be a group and Z its center. If G / Z is cyclic, show that $Z=G$.

Solution. As usual, we consider the onto group homomorphism, $\pi: G \rightarrow G / Z$ and let $b \in G / Z$ be a generator (G / Z is cyclic). Lift it to $a \in G$. Then, any element $x \in G$ is of the form $x=a^{k} z$ where $k \in \mathbb{Z}$ and $z \in Z$ and can be seen as follows. We know that $\pi(x)=b^{k}$ for some k and then, $\pi\left(a^{-k} x\right)=b^{-k} b^{k}$, identity of G / Z and so this element belongs to the kernel which is Z. So, $a^{-k} x=z \in Z$ and then, $x=a^{k} z$. Now, take two elements $x=a^{k} z_{1}, y=a^{l} z_{2}$, where k, l are integers and $z_{1}, z_{2} \in Z$. Then,

$$
x y=a^{k} z_{1} a^{l} z_{2}=a^{k} a^{l} z_{1} z_{2}
$$

Now use again $z_{1} z_{2}=z_{2} z_{1}, a^{k} a^{l}=a^{l} a^{k}$ etc. to get $x y=$ $y x$.
(b) Show that any group of order 9 is abelian.

Solution. This is the hardest of the problems and the statement is true for any group of order p^{2}, p any prime. Since the proof is similar, I shall give a proof of the general result. If you fail to finish this problem, do not despair.
So, let G be a group with $o(G)=p^{2}$. By Lagrange, every element in G must have order $1, p$ or p^{2}, since this order must divide $o(G)$. The only element with order 1 is e. If it had an element of order p^{2}, then it must be the cyclic
group and so we are done. Thus we may assume every element other than e has order p.
Let $S=\left\{H_{1}, \ldots, H_{n}\right\}$, distinct subgroups (necessarily cyclic) of order p. In a group of order p we have seen that any non-identity element generates it and so $H_{i} \cap H_{j}=$ $\{e\}$. Since every non-identity element has order p, they must be in one of the H_{i}. Thus, we see that $G-\{e\}=$ $\cup\left(H_{i}-\{e\}\right)$, a disjoint union. Since each $H_{i}-\{e\}$ has exactly $p-1$ elements, we get $p^{2}-1=n(p-1)$ and so $n=p+1$.
Next, we look at the map $\phi: G \rightarrow A(S)$ (the group of one-to-one onto maps from S to itself, with composition as the binary operation) given as $\phi(g)\left(H_{i}\right)=g H_{i} g^{-1}$. Easy to see that this is a group homomorphism. Let $N=$ $\operatorname{ker} \phi$. Then $G / N=\phi(G)$ and $o(G / N)=o(G) / o(N)=$ $o(\phi(G))=d$. So, d divides p^{2} and $o(A(S))=(p+1)!$. Since $\operatorname{gcd}\left(p^{2},(p+1)!\right)=p$, we see that $d=1$ or $d=p$. This says $N \neq\{e\}$. Every element g of N has thus the property, $g H_{i} g^{-1}=H_{i}$ for all i. If necessary, we restrict to a subgroup of N (if $N=G$) and assume $o(N)=3$. This says, we have a map $f_{i}: N \rightarrow \operatorname{Aut}\left(H_{i}\right)$ (why?) given as $f_{i}(g)(x)=g x g^{-1}$ for $g \in N, x \in H_{i}$. But, $o\left(H_{i}\right)=p$ and thus $o\left(\operatorname{Aut}\left(H_{i}\right)\right)=p-$, so f_{i} is not one-to-one. But, $o(N)=3$, so its subgroups are just the trivial groups and thus kernel of f_{i} is all of N. This says, $N \subset Z(G)$ and then the previous problem finishes the proof.
We will give a slightly better proof after we do class equation.

