HOMEWORK 5, DUE THU MAR 4TH

All solutions should be with proofs, you may quote from the book or from previous home works
(1) Let G be a finite group and let p be the smallest prime dividing the order of G. Let H be a subgroup of G of index p. Show that H is normal.

Solution. We let G act on G / H, the set of left cosets, as follows. We define the map $T: G \rightarrow \operatorname{Aut}(G / H)$ by, $T(g)(x H)=g x H$. (Check that $T(g)$ is indeed a bijection from G / H to itself and thus gives an element of $\operatorname{Aut}(G / H)$.) Next one checks T is a group homomorphism and is straight forward. Let $K=$ ker T. If $g \notin H$, then $T(g)(e H=H)=g H \neq H$ and thus $g \notin K$. So, $K \subset H$ and thus $d=o(G / K)$ is divisible by $o(G / H)=p$.

Next, we see that since $K \subset G$, d divides $o(G)$. Also, $K \subset$ $\operatorname{Aut}(G / H)=S_{p}$ and thus $d \mid o\left(S_{p}\right)=p!$. Thus d divides $\operatorname{gcd}(o(G), p!)=p$. Since p divides d and d divides $p, d=p$ and then $K=H$ and K is normal, being kernel of a homomorphism.
(2) Let G be a group of order 231. Show that the 11-Sylow subgroup is in the center of G.

Solution. $231=11 \times 7 \times 3$. Since the number of 11-Sylow subgroups is $1+11 k$ for some k and divides 21 , the only possibility is $k=0$ and thus it is normal. Let H denote this subgroup. Let K be a 7-Sylow subgroup. Then, we get a homomorphism $T: K \rightarrow \operatorname{Aut}(H)$, by conjugation, $T(g)(h)=g h g^{-1}$. But, $K \cong \mathbb{Z} / 7 \mathbb{Z}$ and $\operatorname{Aut}(H)$ is a (cylic) group of order 10. So, T must be trivial. Thus, the elements of K commute with elements of H. Similar argument can be made for the 3-Sylow group and then it is easy to see that H is in the center.
(3) Let G be a group of order $p^{2} q, p \neq q$ primes. Show that either a p-Sylow subgroup or q-Sylow subgroup is normal.

Solution. Assume that neither are normal. By the third Sylow theorem, we must have $1+k p>1 p$-Sylow subgroups and $i+k p$ should divide q. But q is a prime, so $1+k p=q$ and so $p \mid q-1$. In particular $q>p$. Similarly we must have $1+$ $k q>1 q$-Sylow subgroups and $1+k q$ must divide p^{2}. So, $1+k q=p$ or $1+k q=p^{2}$. The first is impossible, since $q>p$. So, $1+k q=p^{2}$. So, q divides $p^{2}-1=(p-1)(p+1)$. Thus q must divide $p-1$, which is not possibe, since $q \geq p+1$ and thus it must divide $p+1$ and so $q=p+1$. The only such primes are $p=2, q=3$.

Thus we want to study groups of order 12. If the 3-Sylow subgroup is not normal, then there are $1+3 k>1$ of them dividing 4 and then this number has to be 4 . Since these are cyclic groups of order 3, two of them can only intersect in identity. So, there are 8 elements of order 3 and its complement must be the unique 2-Sylow and hence normal.
(4) Let G be a group of order $p q, p<q$ primes.
(a) If p does not divide $q-1$, show that G is cyclic.

Solution. Let H be a p-Sylow subgroup and K be a q Sylow subgroup. Since there are $1+k q q$-Sylow subgroups and this number divides $p, k=0$ and so K is normal. Similarly, the hypothesis implies H is normal. Also, the conjugation map $T: H \rightarrow \operatorname{Aut}(K)$ is a map from $\mathbb{Z} / p \mathbb{Z}$ to a (cyclic) group of order $q-1$ and our assumption implies T is trivial. So, elements of H, K commute and then $G=H K$ is abelian. So, $G \cong \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / q \mathbb{Z} \cong$ $\mathbb{Z} / p q \mathbb{Z}$, the last by Chinese remainder theorem.
(b) If p divides $q-1$, show that there is a unique non-abelian group G up to isomorphism.

Solution. Let H, K be as before, Exactly as before, K is normal. Thus, as before we get a homomorphism $T: H \rightarrow$ Aut (K) and if this map is trivial, G is abelian. So, assume G is not abelian. Since $H \cong \mathbb{Z} / p \mathbb{Z}$, any homomorphism from H must be either trivial or one-to-one (kernel of T is a subgroup and H has only trivial subgroups). Thus, since $\operatorname{Aut}(K)$ is a cyclic group of order $q-1, T$ sends a generator a to an element of order precisely p of $\operatorname{Aut}(K)$ and G is a semi-direct product of H, K using T.
(5) Let \mathbb{F}_{p} as usual denote the field of p elements (i. e. $\mathbb{Z} / p \mathbb{Z}$ for a prime p, where we have addition and multiplication as usual).
(a) Calculate the order of $G L\left(n, \mathbb{F}_{p}\right)$.

Solution. If $A \in G=G L\left(n, \mathbb{F}_{p}\right)$, we write it as $A=$ $\left[\underline{a}_{1}, \ldots, \underline{a}_{n}\right]$, using column vectors. Then, $A \in G$ is equivalent to saying these vectors are linearly independent over \mathbb{F}_{p}. Thus, \underline{a}_{1} can be any non-zero vector and so has a choice of $p^{n}-1$ possibilities. Once we fix $\underline{a}_{1}, \underline{a}_{2}$ can not be a multiple of \underline{a}_{1} and thus has a choice of $p^{n}-p$ possibilities. \underline{a}_{3} can not be a linear combination of $\underline{a}_{1}, \underline{a}_{2}$ and thus has $p^{n}-p^{2}$ choices. Continuing, we see that
$o(G)=\left(p^{n}-1\right)\left(p^{n}-p\right)\left(p^{n}-p^{2}\right) \cdots\left(p^{n}-p^{n-1}\right)$.
(b) Find a p-Sylow subgroup (more or less explicitly describe).

Solution. From the previous part, the order of the the p Sylow subgroup is $p^{\frac{n(n-1}{2}}$. Take $H \subset G$ to be the upper triangular matrices with 1 on the diagonal. I will leave you to check that this is indeed a subgroup, has the desired order and thus one such p-Sylow subgroup. (You may use facts learned in linear algebra.)
(6) Let G be a finite group in which $(a b)^{p}=a^{p} b^{p}$ for every $a, b \in$ G where p divides $o(G)$.
(a) Prove that the p-Sylow subgroup of G is normal.

Solution. Let $q=p^{n} \mid o(G)$ and $p^{n+1} \not \chi_{0}(G)$. The condition immediately gives $(a b)^{q}=a^{q} b^{q}$ for all $a, b \in G$. So, the map defined by $T: G \rightarrow G, T(a)=a^{q}$ is a group homomorphism. Let P be the kernel of T. Then P is a normal subgroup of G and every element a with $a^{q}=e$ lies in P. Every element of every p-Sylow subgroup has this property, showing that P must be the unique p-Sylow subgroup.
(b) If P is the p-Sylow subgroup, then there exists a normal subgroup N such that $P \cap N=\{e\}$ and $P N=G$.

Solution. Take $N=T(G)$. Easy to check that $P \cap N=\{e\}$ and $P N=G$.

