HOMEWORK 5, DUE THU MAR 4TH

All solutions should be with proofs, you may quote from the book or from previous home works

(1) Let *G* be a finite group and let *p* be the smallest prime dividing the order of *G*. Let *H* be a subgroup of *G* of index *p*. Show that *H* is normal.

Solution. We let *G* act on *G*/*H*, the set of left cosets, as follows. We define the map $T : G \to \operatorname{Aut}(G/H)$ by, T(g)(xH) = gxH. (Check that T(g) is indeed a bijection from *G*/*H* to itself and thus gives an element of $\operatorname{Aut}(G/H)$.) Next one checks *T* is a group homomorphism and is straight forward. Let K =ker *T*. If $g \notin H$, then $T(g)(eH = H) = gH \neq H$ and thus $g \notin K$. So, $K \subset H$ and thus d = o(G/K) is divisible by o(G/H) = p.

Next, we see that since $K \subset G$, d divides o(G). Also, $K \subset Aut(G/H) = S_p$ and thus $d|o(S_p) = p!$. Thus d divides gcd(o(G), p!) = p. Since p divides d and d divides p, d = p and then K = H and K is normal, being kernel of a homomorphism.

(2) Let *G* be a group of order 231. Show that the 11-Sylow subgroup is in the center of *G*.

Solution. $231 = 11 \times 7 \times 3$. Since the number of 11-Sylow subgroups is 1 + 11k for some k and divides 21, the only possibility is k = 0 and thus it is normal. Let H denote this subgroup. Let K be a 7-Sylow subgroup. Then, we get a homomorphism $T : K \rightarrow \text{Aut}(H)$, by conjugation, $T(g)(h) = ghg^{-1}$. But, $K \cong \mathbb{Z}/7\mathbb{Z}$ and Aut(H) is a (cylic) group of order 10. So, Tmust be trivial. Thus, the elements of K commute with elements of H. Similar argument can be made for the 3-Sylow group and then it is easy to see that H is in the center.

(3) Let *G* be a group of order p^2q , $p \neq q$ primes. Show that either a *p*-Sylow subgroup or *q*-Sylow subgroup is normal.

Solution. Assume that neither are normal. By the third Sylow theorem, we must have 1 + kp > 1 *p*-Sylow subgroups and i + kp should divide *q*. But *q* is a prime, so 1 + kp = q and so p|q - 1. In particular q > p. Similarly we must have 1 + kq > 1 *q*-Sylow subgroups and 1 + kq must divide p^2 . So, 1 + kq = p or $1 + kq = p^2$. The first is impossible, since q > p. So, $1 + kq = p^2$. So, *q* divides $p^2 - 1 = (p - 1)(p + 1)$. Thus *q* must divide p - 1, which is not possibe, since $q \ge p + 1$ and thus it must divide p + 1 and so q = p + 1. The only such primes are p = 2, q = 3.

Thus we want to study groups of order 12. If the 3-Sylow subgroup is not normal, then there are 1 + 3k > 1 of them dividing 4 and then this number has to be 4. Since these are cyclic groups of order 3, two of them can only intersect in identity. So, there are 8 elements of order 3 and its complement must be the unique 2-Sylow and hence normal.

- (4) Let *G* be a group of order pq, p < q primes.
 - (a) If *p* does not divide q 1, show that *G* is cyclic.

Solution. Let *H* be a *p*-Sylow subgroup and *K* be a *q*-Sylow subgroup. Since there are 1 + kq *q*-Sylow subgroups and this number divides p, k = 0 and so *K* is normal. Similarly, the hypothesis implies *H* is normal. Also, the conjugation map $T : H \rightarrow \text{Aut}(K)$ is a map from $\mathbb{Z}/p\mathbb{Z}$ to a (cyclic) group of order q - 1 and our assumption implies *T* is trivial. So, elements of *H*, *K* commute and then G = HK is abelian. So, $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \cong \mathbb{Z}/p\mathbb{Z}$, the last by Chinese remainder theorem.

(b) If *p* divides *q* − 1, show that there is a unique non-abelian group *G* up to isomorphism.

Solution. Let H, K be as before, Exactly as before, K is normal. Thus, as before we get a homomorphism $T : H \rightarrow Aut(K)$ and if this map is trivial, G is abelian. So, assume G is not abelian. Since $H \cong \mathbb{Z}/p\mathbb{Z}$, any homomorphism from H must be either trivial or one-to-one (kernel of T is a subgroup and H has only trivial subgroups). Thus, since Aut(K) is a cyclic group of order q - 1, T sends a generator a to an element of order precisely p of Aut(K) and G is a semi-direct product of H, K using T.

- (5) Let \mathbb{F}_p as usual denote the field of p elements (i. e. $\mathbb{Z}/p\mathbb{Z}$ for a prime p, where we have addition and multiplication as usual).
 - (a) Calculate the order of $GL(n, \mathbb{F}_p)$.

Solution. If $A \in G = GL(n, \mathbb{F}_p)$, we write it as $A = [\underline{a}_1, \ldots, \underline{a}_n]$, using column vectors. Then, $A \in G$ is equivalent to saying these vectors are linearly independent over \mathbb{F}_p . Thus, \underline{a}_1 can be any non-zero vector and so has a choice of $p^n - 1$ possibilities. Once we fix \underline{a}_1 , \underline{a}_2 can not be a multiple of \underline{a}_1 and thus has a choice of $p^n - p$ possibilities. \underline{a}_3 can not be a linear combination of $\underline{a}_1, \underline{a}_2$ and thus has $p^n - p^2$ choices. Continuing, we see that

$$o(G) = (p^{n} - 1)(p^{n} - p)(p^{n} - p^{2}) \cdots (p^{n} - p^{n-1}).$$

(b) Find a *p*-Sylow subgroup (more or less explicitly describe).

Solution. From the previous part, the order of the the *p*-Sylow subgroup is $p^{\frac{n(n-1)}{2}}$. Take $H \subset G$ to be the upper triangular matrices with 1 on the diagonal. I will leave you to check that this is indeed a subgroup, has the desired order and thus one such *p*-Sylow subgroup. (You may use facts learned in linear algebra.)

- (6) Let *G* be a finite group in which (*ab*)^{*p*} = *a^pb^p* for every *a*, *b* ∈ *G* where *p* divides *o*(*G*).
 - (a) Prove that the *p*-Sylow subgroup of *G* is normal.

Solution. Let $q = p^n | o(G)$ and $p^{n+1} \not | o(G)$. The condition immediately gives $(ab)^q = a^q b^q$ for all $a, b \in G$. So, the map defined by $T : G \to G$, $T(a) = a^q$ is a group homomorphism. Let *P* be the kernel of *T*. Then *P* is a normal subgroup of *G* and every element *a* with $a^q = e$ lies in *P*. Every element of every *p*-Sylow subgroup has this property, showing that *P* must be the unique *p*-Sylow subgroup.

(b) If *P* is the *p*-Sylow subgroup, then there exists a normal subgroup *N* such that $P \cap N = \{e\}$ and PN = G.

Solution. Take N = T(G). Easy to check that $P \cap N = \{e\}$ and PN = G.