HOMEWORK 6, DUE THU MAR 11TH

All solutions should be with proofs, you may quote from the book or from

 previous home works(1) Let G be a finite abelian group of order n and let $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$. Let $g=\prod_{i=1}^{n} g_{i}$.
(a) Show that $g^{2}=e$.

Solution. We first partition G into two sets, $G_{1}=\{x \in$ $\left.G \mid x^{2}=e\right\}$ and $G_{2}=\left\{x \in G \mid x^{2} \neq e\right\}$. So, we can write $g=h k$ where $h=\prod_{x \in G_{1}} x, k=\prod_{x \in G_{2}} x$. Next, we notice that $h^{2}=e$. Notice also that if $x \in G_{2}$, then $x^{-1} \in G_{2}$ and $x \neq x^{-1}$. Thus we can pair every element in G_{2} with its inverse and thus we get $k=e$. So, $g=h$ and $g^{2}=h^{2}=$ e.
(b) If $o(G)$ is either odd or G has more than one element of order two, show that $g=e$.

Solution. If $o(G)$ is odd, $G_{1}=\{e\}$ and thus $h=e$. Now assume that G has more than one element of order 2. The G_{1} above is a subgroup of G with all non-trivial elements of order 2 and contains all such elements of G. Thus, the assumption implies $o\left(G_{1}\right)>2$ and so $o\left(G_{1}\right)=2^{m}$ with $m>1$. Proof is by induction on m. If $m=2$, then $G_{1}=\{e, a, b, a b\}$ and so the product h is just e. Now, let $m>2$ and take $H \subset G_{1}$, a subgroup of index 2 (why does it exist?). Then $G_{1}=H \cup a H$, the two cosets. Since $o(H)=2^{m-1}$ and $m-1>1$, by induction, the product of elements of H is just e. The product of elements in $a H$ is just $a^{o(H)}$ multiplied by the product of elements of H and since $o(H)$ is even, this too is identity.
(c) If G has exactly one element of order 2 , say x, show that $g=x$.

Solution. In this case, $G_{1}=\{e, x\}$ and then the product is just x.
(2) Let p be a prime number.
(a) Show that for any $x \in \mathbb{Z}, x^{p} \equiv x \bmod p$. (Fermat's little theorem)

Solution. We use the fact that the non-zero elements of \mathbb{F}_{p} is a group of order $p-1$. Thus, $x^{p-1} \equiv 1 \bmod p$ for any integer x with p not dividing it. So, we get for these $x^{p} \equiv x \bmod p$. If p divides x, then both x^{p} and x are zero $\operatorname{modulo} p$ and so, cearly $x^{p} \equiv x \bmod p$.
(b) Show that $(p-1)!\equiv-1 \bmod p$. (Wilson's theorem)

Solution. Here, we use the fact that the non-zero elements of \mathbb{F}_{p} is in fact a cyclic group. If $p=2$, the result is trivial and so assume p is odd. Then, this cyclic group has order $p-1$ an even number and has exactly one element (class of -1) of order 2 . Thus, the product of elements in this group, which is just $(p-1)$! must be -1 modulo p by problem (1)(c).
(c) Assume p is odd. Write

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1}=\frac{a}{b}
$$

with $a, b \in \mathbb{Z}$. Show that $p \mid a$.
Solution. Again, we look at \mathbb{F}_{p}^{*}, the non-zero elements of \mathbb{F}_{p}. We have the natural map $\alpha: \mathbb{F}_{p}^{*} \rightarrow \mathbb{F}_{p}^{*}$, given by $\alpha(i)$, the inverse of i where $1 \leq i<p$ and so are the $\alpha(i)$. This just means, $\alpha(i) \equiv 1 \bmod p$, so we write $\alpha(i) i=x_{i}$ with $x_{i} \equiv 1 \bmod p$.Thus, $\frac{1}{i}=\frac{\alpha(i)}{x_{i}}$. Let $x=\prod x_{i}$ and then our sum is just $\frac{\sum \frac{x \alpha(i)}{x_{i}}}{x}$. Since p does not divide x, suffices to show that the numerator is a multiple of p. But, modulo p, each of x / x_{i} is 1 and thus modulo p, the numerator is just $\sum \alpha(i)=\sum i=p(p-1) / 2=0$.
(3) Find all automorphisms of S_{3}.

Solution. We always have the group homomorphism $S_{3} \rightarrow$ $\operatorname{Aut}\left(S_{3}\right)$, given by conjugation and whose kernel is the center, which in this case is just $\{e\}$ and so this map is one-to-one. Now, let $T \in \operatorname{Aut}\left(S_{3}\right)$. Let $a \in S_{3}$ be a two cycle. Then $T(a)$
can be written as product of disjoint cycles. If this contains a 3-cycle, then there are no more disjoint cycles, but since $2=o(a)=o(T(a))=3$, we have a contradiction. So, this product can not contain 3-cycles and all those appearing must be 2 or 1 cycle. If it had only 1 -cycles, this is just the identity again contradicting $o(a)=2$. Thus it must have at least one 2 -cycle and then it is just a two cycle. Thus, T induces a map from the set of 2-cycles to itself. There are three 2-cycles and this induced map is a bijection. So, we get a group homomorphism $\operatorname{Aut}\left(S_{3}\right) \rightarrow S_{3}$, where the latter S_{3} is the set of all bijections from the set of 2 -cycles to itself. I claim that this map too is one-to-one. If not, it has a kernel and let T be in the kernel. Then, $T(a)=a$ for all two cycles. Since (123) $=(13)(12)$, we see that $T(123)=T(13) T(12)=(13)(12)=$ (123), we see that T also acts as identity on a 3-cycle. Since every element in S_{3} can be written as product of such cycles, we see that T must be identity. So, $o\left(S_{3}\right) \leq o\left(\operatorname{Aut}\left(S_{3}\right)\right) \leq o\left(S_{3}\right)$ and thus these are all the same. Thus the natural conjugation map $S_{3} \rightarrow \operatorname{Aut}\left(S_{3}\right)$ is an isomorphism.
(4) This is a long problem, but most cases are easy. Show that any group of order at most 30 is either of prime order or has a non-trivial normal subgroup, by analyzing each order. (In fact, you should be able to do this for groups of order less than 60 . We have seen A_{5}, whose order is 60 , is simple.)

Solution. Since every group with prime power order has a non-trivial center, it is easy to see that they have a non-trivial normal subgroup, unless it is of prime order. We have also dealt with groups of order $p q, p^{2} q$ where p, q are distinct primes in last homework.

So, the first number which does not fall into these categories is 24 . So, let G be one such. If the 3-Sylow subgroup is not normal, there are $1+3 k>1$ of them and this should divide 8 . Only such is 4 . If S is the set of these, one has a natural map $G \rightarrow A(S)$, given by conjugation action and this map is not trivial. So, the kernel is a normal subgroup and we are done if it is non-trivial. If it is trivial, both G and $A(S)=S_{4}$ have 24 elements and thus $G \cong S_{4}$. Then, A_{4} is a proper normal subgroup.

Next number not falling into the above group of numbers is 30 . By Sylow theorem, one sees that the 3-Sylow subgroup must be normal or there are ten of them. So, there are 20 elements of order 3. If the 5-Sylow subgroup is also not normal, there must be six of them and then there are 24 elements of order 5 which means the group has more than $20+24+1$ elements, which is absurd.
(5) Let $G=S L\left(2, \mathbb{F}_{p}\right)$, and Z be the center of $S L\left(2, \mathbb{F}_{p}\right)$. Let $P=P G L\left(2, \mathbb{F}_{p}\right)=S L\left(2, \mathbb{F}_{p}\right) / Z$, the projective linear group. Calculate $o(G)$ and $o(P)$.

Solution. We have seen in an earlier home work that

$$
o\left(G L\left(2, \mathbb{F}_{p}\right)\right)=\left(p^{2}-1\right)\left(p^{2}-p\right)
$$

$S L\left(2, \mathbb{F}_{p}\right)$ is the kernel of the surjective homomorphism det :
$G L\left(2, \mathbb{F}_{p}\right) \rightarrow \mathbb{F}_{p}^{*}$ and thus its order is $\frac{\left(p^{2}-1\right)\left(p^{2}-p\right)}{p-1}=p\left(p^{2}-1\right)$. The center consists of scalar matrices $a I$, with $a \in \mathbb{F}_{p}^{*}$ (do you know why?) . Since $a I \in S L\left(2, \mathbb{F}_{p}\right)$, we must have $a^{2}=1$. So, if $p=2$, we only have identity in the kernel and if p is odd, $o(Z)=2$. Thus, if $p=2, G L\left(2, \mathbb{F}_{p}\right)=S L\left(2, \mathbb{F}_{p}\right)=P$ and its order is 6 . If p is odd, we see that $o(P)=\frac{p\left(p^{2}-1\right)}{2}$.
(6) Let notation be as in the previous problem and assume that $p=5$. Further assume that in this case, we know P is simple. We will as usual denote elements of \mathbb{F}_{p} as $\{0,1,2,3,4\}$.
(a) Let

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right], B=\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right]
$$

Show that $\operatorname{det} A=\operatorname{det} B=1$ and then we identify these with their images in P.

Solution. This is just an easy calculation by the usual formula for determinant.
(b) Show that A, B generate a 2-Sylow subgroup H of P and $E H E^{-1} \neq H$, where ,

$$
E=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

So H is not normal.
Solution. One easily checks that $o(A)=o(B)=2$ (in P) and $A B=B A$, so that the group generated by A, B is just $\{I d, A, B, A B\}$. So, it is a 2-Sylow subgroup.
One easily checks $E A E^{-1} \notin H$.
(c) Let $C=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$. Show that $\operatorname{det} C=1$ and $o(C)=3$. Show that $C \in N(H)$, the normalizer of H. Deduce that $o(N(H))=12$.

Solution. The first part is just a checking. For the last part, notice that $N(H)$ contains H and C. So its order is a multiple of 4 and 3 and thus a multiple of 12 . So, $o(N(H))=12$ or 60 . If it is 60 , then H would be normal, which we have seen is not the case.
(d) Prove that $P \cong A_{5}$.

Solution. Since the number of conjugates of H is the index of $N(H)$ in P, it is 5 . So, let S be the set of 2-Sylow subgroups. We have a homomorphism $P \rightarrow A(S)=S_{5}$ as usual, conjugating the Sylow subgroups. This map is not trivial, since all 2-Sylow subgroups are conjugate and since we are assuming P is simple, this map must be injective. Thus the image is a subgroup K of S_{5} of index 2 and thus normal. If $K \neq A_{5}$, then $K \cap A_{5}$ would be an index 2 normal subgroup of A_{5}, but A_{5} is simple. So, $K=A_{5}$.

