HOMEWORK 7, DUE THU MAR 25TH

All solutions should be with proofs, you may quote from the book or from previous home works
(1) Let R, S be rings.
(a) Show that $A=R \times S$ is a ring with co-ordinate wise addition and multiplication. That is, $(a, b)+(c, d)=(a+$ $c, b+d)$ and $(a, b)(c, d)=(a c, b d)$. Show that the map $R \rightarrow R \times S$, given by $a \mapsto(a, 0)$ is a ring homomorphism. (Similarly for $S \rightarrow R \times S$. The construction can be done more generally, for a collection of rings. If R_{i} for $i \in I$, an indexing set, is a collection of rings, we can take ΠR_{i} and give it as above a ring structure.)
Solution. This is an easy checking.
(b) If R is a commutative ring with identity and $e \in R$ is an idempotent (that means $e^{2}=e$), show that $1-e$ is also an idempotent. Show that, $R e, R(1-e)$ are subrings of R and $R=R e \times R(1-e)$ as rings.

Solution. We just calculate, $(1-e)^{2}=1-2 e+e^{2}=1-$ $2 e+e=1-e$.
We check $R e$ is closed under addition and multiplication. If, $a e, b e \in R e$, with $a, b \in R$, we get $a e+b e=(a+b) e$ and similarly, $(a e)(b e)=a b e^{2}=a b e$. Similarly for $R(1-e)$. Finally, we have a map $f: R \rightarrow \operatorname{Re} \times R(1-e), f(a)=$ (ae, $a(1-e)$). We show that this is a ring isomorphism, which is just easy checking. $f(a+b)=((a+b) e,(a+$ $b)(1-e))=(a e, a(1-e))+(b, b(1-e))=f(a)+f(b)$, $f(a b)=(a b e, a b(1-e))=(a e, a(1-e))(b e, b(1-e))=$ $f(a) f(b)$.
Finally, we check that this map is one-to-one and onto. If $f(a)=0$, then $a e=a(1-e)=0$ and then, $0=a e+a(1-$ $e)=a$. Similarly, if $(x e, y(1-e)) \in R e \times R(1-e)$, take $a=x e+y(1-e) \in R$ and then, $f(a)=(a e, a(1-e))=$ $((x e+y(1-e)) e,(x e+y(1-e))(1-e))=\left(x e^{2}, y(1-\right.$ $\left.e)^{2}\right)=(x e, y(1-e))$.
(c) Find all non-trivial idempotents (since 0,1 are always idempotents, we want to find others if any) in the rings $\mathbb{Z} / 25 \mathbb{Z}, \mathbb{Z} / 15 \mathbb{Z}$. For $\mathbb{Z} / 25 \mathbb{Z}$, if class $x \in \mathbb{Z}$ is an idempotent, then $x^{2}-$ $x=x(x-1)$ must be divisible by 25 . So, either 25 divides x, or it divides $x-1$ or 5 divides x and 5 divides $x-$ 1. But, the last possibility is impossible, since 5 can not divide both x and $x-1$. If 25 divides x , then class of x is zero and if 25 divides $x-1$, class of x is just 1 . So, there are no non-trivial idempotents in $\mathbb{Z} / 25 \mathbb{Z}$.
For, $\mathbb{Z} / 15 \mathbb{Z}$, I will leave you to check that the classes of $6,10 \equiv(1-6)$ are the only non-trivial idempotents.
(2) Let k be a field and V a vector space (possibly infinite dimensional) over k.
(a) Show that $E=\{f: V \rightarrow V \mid f, k$ - linear $\}$ is a ring with addition and multiplication defined as follows. $(f+g)(v)=$ $f(v)+g(v)$ and $f g(v)=f(g(v))$. (If V is finite dimensional, you must recognize this as ring of square matrices, once we choose a basis).

Solution. This is just a straight forward verification.
(b) Take $V=k[X]$, polynomial ring in one variable. Show that we can identify X as an element of V, multiplication on V by X. Similarly $D=\frac{d}{d X}$, the derivative is an element of E. Show that $D X-X D=1$, where 1 stands for the identity function.

Solution. We calculate $D X-X D$ on a polynomial $P(X) \in$ V.

$$
\begin{aligned}
(D X-X D)(P(X)) & =D(X P(X))-X(D(P(X))) \\
& =X P^{\prime}(X)+P(X)-X P^{\prime}(X) \\
& =P(X)
\end{aligned}
$$

(3) Let R be any commutative ring with identity. A map $D: R \rightarrow$ R is called a derivation if $D(a+b)=D(a)+D(b)$ and $D(a b)=$ $a D(b)+b D(a)$. (This is called the Leibniz' rule or product rule in Calculus, if you remember).
(a) Show that $D(1)=0$.

Solution. $D(1)=D(1 \cdot 1)=1 D(1)+1 D(1)=D(1)+$ $D(1)$ and then $D(1)=0$.
(b) Let $A=\{a \in R \mid D(a)=0\}$ (often called the kernel of D). Show that A is a subring of R.

Solution. If $a, b \in A$, then $D(a+b)=D(a)+D(b)=0$ and similarly, $D(a b)=a D(b)+b D(a)=a \cdot 0+b \cdot 0=0$. Thus, both $a+b, a b \in A$.
(c) Assume that \mathbb{Q}, the field of rational numbers, is a subring of R. Then, show that $D(q)=0$ for all $q \in \mathbb{Q}$.

Solution. It is immediate that $D(0)=0$ and if n is a positive integer, write $n=1+\cdots+1$ and then, $D(n)=$ $D(1)+\cdots+D(1)=0$. Notice that the same argument says $D(n a)=n D(a)$ for any $a \in R$. If $n<0, D(n)=$ $-D(-n)=0$. Finally, if $r=p / q \in \mathbb{Q}$, with p, q integers and $q>0$, then we have, $0=D(p)=D(q \cdot p / q)=$ $q D(r)$ and then, $D(r)=\frac{1}{q} 0=0$.
(d) Assume further, that for any element $a \in R$ there is an n, positive integer such that $D^{n}(a)=0\left(D^{n}\right.$ as usual is the short form for composition of D with itself n times) and that there is an $x \in R$ with $D(x)=1$. Show that $R=A[x]$. That is, any element in R is just a polynomial in x with coefficients from A.

Solution. Let me start with an easy remark. For any nonnegative integer n and $b \in A$, one easily checks that $D^{n}\left(b x^{n}\right)=b D^{n}\left(x^{n}\right)=b n!$.
If $D(a)=0$, then $a \in A$ by definition of A. So assume that we have shown by induction that if $D^{n}(a)=0$ for some fixed n, then $a \in A[x]$. Since we know this for $n=$ 1, we have the initial case for induction. Now, let $a \in R$ be such that $D^{n+1}(a)=0$. If $D^{n}(a)=0$, we will be done by induction, so assume $D^{n}(a)=b \neq 0$. Notice that $D(b)=D^{n+1}(a)=0$ and thus $b \in A$. Then, consider $a^{\prime}=a-\frac{b x^{n}}{n!}$. An easy calculation shows $D^{n}\left(a^{\prime}\right)=0$ and thus $a^{\prime} \in A[x]$, but then $a=a^{\prime}+\frac{b x^{n}}{n!} \in A[x]$.
(4) Consider $R=M_{2}(\mathbb{R})$, the $n \times n$ matrices. We have seen that it is a (non-commutative) ring with the usual matrix addition and multiplication. So, we can multiply a matrix $A \in R$ with a vector $\mathbf{v} \in \mathbb{R}^{2}=V$ as usual. (The results below are true for any $M_{n}(K)$, where K is any field and n is any positive integer, but the ideas can already be seen in the case $n=2$.)
(a) Let $\mathbf{0} \neq \mathbf{v} \in V$ and let $I=\{A \in R \mid A \mathbf{v}=\mathbf{0}\}$. Show that I is a left ideal of R.

Solution. This is obvious, since if $A \in I$ and $M \in R$, $(M A) \mathbf{v}=M(A \mathbf{v})=M \mathbf{0}=\mathbf{0}$.
(b) Show that I is maximal. That is if $I \subset J \subset R$, where J is another left ideal, then $I=J$ or $J=R$.

Solution. Assume we had such a $J \neq I$. Then we will show that $J=R$. So, we have an $A \in J$ such that $A \mathbf{v}=$ $\mathbf{v}^{\prime} \neq \mathbf{0}$. Since there is always a linear transformation $M \in R$ such that $M \mathbf{v}^{\prime}=\mathbf{v}$ (any non-zero vector can be mapped to any other non-zero vector), and since $M A \in$ J, we have $(M A) \mathbf{v}=\mathbf{v}$. So, we may rename $M A$ by A. Now, let \mathbf{w} be another vector so that $\mathbf{v} . \mathbf{w}$ form a basis of V. We have $A \mathbf{v}=\mathbf{v}$. Consider $A \mathbf{w}=a \mathbf{v}+b \mathbf{w}$ for some $a, b \in \mathbb{R}$. If $b \neq 0$, then, the matrix corresponding of A with respect to the basis \mathbf{v}, \mathbf{w} is of the form $\left[\begin{array}{ll}1 & a \\ 0 & b\end{array}\right]$ and thus invertible. Then, $I d=A^{-1} A \in J$ and then $M \cdot I d=M \in J$ for any M and thus $J=R$.
Finally assume that $b=0$ in the above expression. We have a matrix B such that $B \mathbf{v}=0, B \mathbf{w}=\mathbf{w}$. Then $B \in I \subset$ J. Now replace A with $A+B \in J$. Then, $(A+B) \mathbf{v}=\mathbf{v}$ and $(A+B) \mathbf{w}=a \mathbf{v}+\mathbf{w}$ and then by the previous argument, again we are done.
(c) Show that R has no non-trivial two sided ideals.

Solution. Let $I \subset R$ be a non-zero (two-sided) ideal. We will show that $I=R$. Since $0 \neq I$, pick $0 \neq A \in I$. Then, there is a (non-zero) vector $\mathbf{v} \in V$ such that $A \mathbf{v}=\mathbf{v}^{\prime} \neq$ 0 . We can find an $A^{\prime} \in R$ such that $A^{\prime} \mathbf{v}^{\prime}=v$ and then $B=A^{\prime} A \in I$ with $B \mathbf{v}=\mathbf{v}$. Similarly, extending \mathbf{v} to a basis \mathbf{v}, \mathbf{w}, we look at $B \mathbf{w}=a \mathbf{v}+b \mathbf{w}$. If $b \neq 0$, as before, we see that B is invertible and then $I=R$. So, we may
assume $b=0$. Replacing \mathbf{w} with $\mathbf{w}-a \mathbf{v}$, then we can further assume $B \mathbf{w}=0$.
Thus, we have a basis \mathbf{v}, \mathbf{w} of V and a $B \in I$ with $B \mathbf{v}=$ $\mathbf{v}, B \mathbf{w}=0$. So, the matrix of B looks like, $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.
Now, consider

$$
C=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] B\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

One easily computes $C=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ and thus $I d=B+$ $C \in I$ and then $I=R$.
(5) These are a few problems on homomorphisms.
(a) Let $A \in M_{n}(K)=R, K$ any field and consider the map $\phi: K[X] \rightarrow R$, given by, $\phi(P(X))=P(A)$ (this means, if $P(X)=a_{0}+a_{1} X+\cdots+a_{r} X^{r}, P(A)=a_{0} I+a_{1} A+\cdots+$ $\left.a_{r} A^{r}\right)$. Show that this is a ring homomorphism. What is its kernel? (I am just asking for a word you might have learned in linear algebra).
Solution. Checking this is a homomorphism of rings is just routine. The kernel is of the form $M(X) K[X]$, where $M(X) \in K[X]$, with $M(A)=0$ and M is a monic polynomial of the least degree satisfying the equation $M(A)=$ $0 . M(X)$ is called the minimal polynomial of A.
(b) We define new binary operations on R as above. The addition is the same, but a new multiplication is given by $A \star B=B A$. Show that $(R,+, \star)$ is a ring which we call $R^{o p}$. Show that the map $R \rightarrow R^{o p}$ given by $A \mapsto A^{T}$ is a ring homomorphism.

Solution. This too is routine and if you have difficulties, talk to me.

