HOMEWORK 7, DUE THU APR 1ST

All solutions should be with proofs, you may quote from the book or from previous home works
(1) Let A be a Euclidean ring with a Euclidean function d.
(a) Show that $d(1) \leq d(a)$ for any $a \in A$ and a is a unit if and only if $d(a)=d(1)$.

Solution. Since $d(1) \leq d(1 \cdot a)=d(a)$, the first part is obvious. Assume $d(1)=d(a)$. Then, division algorithm says we can write $1=q a+r$ for some $q, r \in A$ with $d(r)<d(a)=d(1)$ or $r=0$. Since for any non-zero r, we have seen that $d(1) \leq d(r)$ and thus r must be zero. So, $1=q a$ and then a is a unit. If a is a unit, we have $a x=1$ for some x and so $d(a) \leq d(a x)=d(1) \leq d(a)$. So, $d(a)=d(1)$.
(b) Now assume the function d above only satisfies the second condition (division algorithm) not necessarily the first $(d(a) \leq d(a x))$. Then, show that $\phi(a)=\min \{d(a x) \mid x \neq$ $0\}$ satisfies both the conditions and thus the ring is an Euclidean domain.

Solution. We first show that $\phi(a) \leq \phi(a x)$ for all $x \neq 0$. This is obvious, since $\{a x y \mid y \neq 0\} \subset\{a y \mid y \neq 0\}$ and so the minimum of $d(a x y)$ is greater than or equal to the minimum of $d(a y)$.
Next, we show that division algorithm can be done with ϕ. Let $a \neq 0$ and choose an x so that $\phi(a)=d(a x)$. If $b \in A$, we can divide by $a x$ to get $b=q a x+r$ with $d(r)<$ $d(a x)=\phi(a)$. Then, $b=(q x) a+r$ as desired.
(2) Let A be a principal ideal domain. (There are PIDs which are not Euclidean domains.)
(a) If $a, b \in A$, both non-zero, as usual we can define their greatest common divisor and least common multiple (lcm for short). Show that $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$ exists in A
for any two non-zero elements a, b. Further, show that $\operatorname{gcd}(a, b) \operatorname{lcm}(a, b)=a b$.

Solution. Consider $I=\{r a+s b \mid r, s \in A\}$. Easy to show that I is an ideal and thus $I=d A$ for some $d \in A$, clearly non-zero. I claim, $d=\operatorname{gcd}(a, b)$. Since $a, b \in d A$, we can write $a=p d, b=q d$ and thus $d|a, d| b$. If $c|a, c| b$, then since $d=r a+s b$ for some $r, s \in A$, we see that $c \mid d$.
Similarly, let $J=a A \cap b A$. Again, easy to show that it is an ideal and then $J=l A$ for some $l \in A$. I will leave you to check that $l=\operatorname{lcm}(a, b)$. The last part I leave you to check (and is easy).
(b) Show that any non-zero prime ideal is maximal.

Solution. Let $P=p A$ be a non-zero prime ideal, so that p is a prime element. If $P \subset Q, Q \neq A$ an ideal, we have $Q=q A$ for some q and q is not a unit. Since $p \in P \subset Q$, we see that $q \mid p$ and since p is a prime, we see that $p=q u$, where u is a unit. Then $Q=P$, proving maximality of P.
(c) Let K be the fraction field of A and let $x \in K$. Assume we have an equation, $x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}=0$ where $a_{i} \in A$. Show that $x \in A$.

Solution. Since $x \in K$, we can write $x=a / b, a, b \in$ $A, B \neq 0$. If $a=0, x=0$, so we may as well assume $a \neq 0$. If $d=\operatorname{gcd}(a, b)$, then $a=d a^{\prime}, b=d b^{\prime}$ and thus $x=a / b=a^{\prime} / b^{\prime}$. So, we may assume $\operatorname{gcd}(a, b)=1$.
Now, multiply our equation by b^{n} to get,

$$
a^{n}+a_{1} a^{n-1} b+a_{2} a^{n-2} b^{2}+\cdots+a_{n} b^{n}=0 .
$$

Since all terms except the first have a b in them, we see that $b \mid a^{n}$. But, $\operatorname{gcd}(a, b)=1$, and so this can happen only if b is a unit. Then $x=a / b \in A$.
(3) Let $A=\mathbb{Z}[\sqrt{-2}]=\{a+b \sqrt{-2} \mid a, b \in \mathbb{Z}\}$.
(a) Show that $\phi: A-\{0\} \rightarrow \mathbb{N}$, given by $\phi(a+b \sqrt{-2})=$ $a^{2}+2 b^{2}$ is a Euclidean function, so that A is a Euclidean domain.

Solution. This is identical to the argument for Gaussian integers. First note that $\phi(x) \geq 1$ for any $x \in A-\{0\}$ and
$\phi(x y)=\phi(x) \phi(y)$, which easily shows the first condition is satisfied.
For division algorithm, we procced as we did in class. Let $x=a+b \sqrt{-2} \neq 0$ and $y=c+d+\sqrt{-2}$. We wish to find $q, r \in A$ so that $y=q x+r$ with $\phi(r)<\phi(x)$. Let $X=a^{2}+2 b^{2}=x(a-b \sqrt{-2})$ and $Y=y(a-b \sqrt{-2})$. Write $Y=P+Q \sqrt{-2}$. Since X is a non-zero integer, by the usual division algorithm, we can write $P=q_{1} X+$ $r_{1}, Q=q_{2} X+r_{2}$, with $\left|r_{i}\right| \leq X / 2$. Thus, $Y=\left(q_{1}+\right.$ $\left.q_{2} \sqrt{-2}\right) X+\left(r_{1}+r_{2} \sqrt{-2}\right)$. Since both X, Y are multiples of $a-b \sqrt{-2}$, we see that $r_{1}+r_{2} \sqrt{-2}=w(a-b \sqrt{-2})$ for some $w \in A$. Then, we have $y=\left(q_{1}+q_{2} \sqrt{-2}\right) x+w$, by cancelling $a-b \sqrt{-2}$. Finally, we have $\phi(w) X=r_{1}^{2}+$ $2 r_{2}^{2} \leq X^{2} / 4+2 X^{2} / 4=3 / 4 X^{2}<X^{2}$. So, $\phi(w)<X=$ $\phi(x)$ which proves what we want.
(b) Decide whether 11,13 and/or 17 are primes in A.

Solution. By the first problem in this set, the only units $u \in A$ are the ones with $\phi(u)=\phi(1)=1$ and it is immediate that the only units are ± 1.
11 is not a prime, since $3+\sqrt{-2}$ divides it. $\quad(11=(3+$ $\sqrt{-2})(3-\sqrt{-2}))$
17 is not a prime since $17=9+8=(3+2 \sqrt{-2})(3-$ $2 \sqrt{-2}$).
The case of 13 is coveredd in the next problem.
(c) Let p be a prime such that $p=1+4 n, n$ a positive integer. Show that p is not a prime in A only if $4^{n} \equiv 1 \bmod p$.

Solution. If $p \in \mathbb{Z}$ is a prime but not a prime in A, take a prime factor $a+b \sqrt{-2}$. Then, $b \neq 0$, since if it is, we write $p=a(c+d \sqrt{-2})$ and then $p=a c$. But $a \neq \pm 1$ and so this means $a=p$ and so p is a prime in A. If $b \neq 0$, it is clear that $a-b \sqrt{-2}$ is a prime different from $a+$ $b \sqrt{-2}$ and $a+b \sqrt{-2}$ also divides p, so $(a+b \sqrt{-2})(a=$ $b \sqrt{-2})=a^{2}+2 b^{2}$ divides p and thus must be p. So, we get $p=a^{2}+2 b^{2}$. This implies in $\mathbb{F}_{p}, a^{2}+2 b^{2}=0$ and $a, b \neq 0$. This says $(a / b)^{2}=-2$. So, $(-2)^{\frac{p-1}{2}}=$ $(a / b)^{p-1}=1$. Since $p=4 n+1$, we get $(-2)^{2 n}=4^{n}=1$.

For $p=13=4 \times 3+1$, we look at 4^{3} modulo 13. I will leave you to check that $4^{3} \equiv-1 \bmod 13$ and thus 13 is a prime in A.
(4) Let $A=\mathbb{Z}[i]$, the ring of Gaussian integers.
(a) Find $\operatorname{gcd}(3+4 i, 4-3 i)$.

Solution. $4-3 i=-i(3+4 i)$ and since i is a unit, we see that the gcd is just $3+4 i$ (or $4-3 i$).
(b) Find all positive integers which can be written as a sum of two squares of integers. (Hint: If a, b, c, d are integers, then there exists integers A, B such that $\left(a^{2}+b^{2}\right)\left(c^{2}+\right.$ $\left.d^{2}\right)=A^{2}+B^{2}$.)

Solution. If we have $N=a^{2}+b^{2}$, let $d=\operatorname{gcd}(a, b)$. Then, $a=a_{1} d, b=b_{1} d$ and so, $N=d^{2}\left(a_{1}^{2}+b_{1}^{2}\right)$. Thus, we see that such integers are precisely the ones got as $a_{1}^{2}+$ b_{1}^{2} with gcd 1 and multiplied by any square. So, if we understand numbers of the form $a^{2}+b^{2}$ with $\operatorname{gcd}(a, b)=$ 1, we know all the others are got by just multiplying these by squares. So, we study the ones with gcd 1.
If a prime p divides $a^{2}+b^{2}$ since p can not divide a, b, we see that in $\mathbb{F}_{p},-1$ is a square. This immediately says that either $p=2$ or $p \equiv 1 \bmod 4$. Thus, $a^{2}+b^{2}=$ $2^{n} p_{1} p_{2} \cdots p_{m}$ for primes $p_{i} \equiv 1 \bmod 4$.
Since $2=1^{2}+1^{2}$ and any p of the above form can be written as sum of two squares, by the hint any such number is a sum of squares. So, we see that $N=d^{2} 2^{n} P$ where P is a product of primes which are congruent to 1 modulo 4.
(c) Show that there are infinitely many primes of the form $4 n+3, n \in \mathbb{N}$.

Solution. We imitate Euclid's proof of infinitude of primes. Assume there are only finitely many such primes, say p_{1}, \ldots, p_{m}. Then, $\Pi p_{i} \equiv 1 \bmod 4$ if m is even and \equiv $3 \bmod 4$ if m is odd. If m is even, take $N=\prod p_{i}+2$ and if odd take $N=\Pi p_{i}+4$. So, $N \equiv 3 \bmod 4$. Notice that $N>1$ and so not a unit and let p be a prime factor. Since N is odd, p is odd. If $p \equiv \bmod 3$, then $p \neq p_{i}$ for any i
and thus we have found a new prime of the desired kind. So, $p \equiv 1 \bmod 4$. Then $N=\Pi p \equiv 1 \bmod 4$ a contradiction to the choice $N \equiv 3 \bmod 4$.
(5) Let A be a Euclidean domain. As usual, we have $G=S L(2, A)$, the set of 2×2 matrices over A with determinant one. We have a subgroup of G generated by matrices of the form $E=$ $\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$ and E^{T}, the transpose of E, where $a \in A$ varies, called the subgroup of elementary matrices and denoted by $E_{2}(A)$. Show that $E_{2}(A)=G$. (You probably realize elements E, E^{T} correspond to row and column operations. The result is valid for $n \times n$ matrices for any n.)

Solution. Let ϕ be an Euclidean function.
We start with a matrix $X=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L(2, A)$. We are allowed to multiply a row (or column) by some element of A and add to the other row (or column). First, let us assume that $a \neq 0$. Then, we can write $b=q a+r$ and so multiplying the first column by q and subtracting from the second column, we can replace b by r. If $r \neq 0, \phi(r)<\phi(a)$. Now, we can add a suitable multiple of the second column to the first to replace a by an s, and again if $s \neq 0, \phi(s)<\phi(r)$. Clearly, this can not go on forever and so by this procedure, we can make the first row to be $(a, 0)$ or $(0, a)$. But, this is the first row of a determinant one matrix implies, a is a unit and then by doing the operation twice, we can make $a=1$. Again, one can make a column operations to get X to look like $\left[\begin{array}{ll}1 & 0 \\ c & d\end{array}\right]$. The determinant condition forces $d=1$. Now, multiply the first row by c and subtract from the second to convert the matrix to identity.
(6) Let $K=\mathbb{F}_{11}$ field with 11 elements and $A=K[x]$, polynomial ring over K.
(a) Show that $x^{2}+1$ is prime (also called irreducible) in A and $L=A /\left(x^{2}+1\right) A$ is a field with 121 elements.

Solution. If $x^{2}+1$ is not irreducible, then since its degree is 2 , the only way it can factorize is $x^{2}+1=(x-a)(x-$ $b)$. This says, $a^{2}+1=0$. So, ord $(a)=4$ in \mathbb{F}_{11}^{*}, which
is a group of order 10 and can not have an element of order 4. Thus, being a PID, $\left(x^{2}+1\right) A$ is a maximal ideal and thus L is a field. Any element in L is the image of some polynomial $P(x) \in A$. By division algorithm, we can write $P(x)=q(x)\left(x^{2}+1\right)+r(x)$, where $\operatorname{deg} r<2$. Since $P(x) \equiv r(x)$ in \mathbb{F}_{11}, we see that any element in L is the image of a polynomial of degree at most one. So, as a \mathbb{F}_{11} vector space, L is generated by images of $1, x$. I will leave you to check that these are linearly independent and thus L is a vector space of dimension 2 and so has $11 \times 11=121$ elements.
(b) Show that $x^{2}+x+4$ is irreducible in A and thus $M=$ $A /\left(x^{2}+x+4\right) A$ is also a field with 121 elements.
Solution. The idea is exactly as before. If it is not irreducible, it has a root a. We complete squares to get ($a+$ $\left.\frac{1}{2}\right)^{2}+\left(4-\frac{1}{4}\right)=0$. (Notice the fractions make sense in \mathbb{F}_{11}, since 2 is a unit. Let $b=a+\frac{1}{2} \cdot \frac{1}{4}=3$ and thus, we get $b^{2}+1=0$, again ord $(b)=4$, which is impossible. M has 1221 elements is now clear.
(c) Show that L is isomorphic to M.

Solution. The idea is exactly same. If we change variables $y=x+\frac{1}{2}$, then $x^{2}+x+4=y^{2}+1$. The change of variable gives an automorphism of A. In other words, consider the map $\theta: \mathbb{F}_{11}[y] \rightarrow \mathbb{F}_{11}[x]$, given by $\theta(P(y))=$ $P\left(x+\frac{1}{2}\right)$. This is an automorphism. $\theta\left(y^{2}+1\right)=x^{2}+x+$ 4 and so $L=\mathbb{F}_{11}[y] /\left(y^{2}+1\right) \cong \mathbb{F}_{11}[x] /\left(x^{2}+x+4\right)=$ M

