
HOMEWORK 7, DUE THU APR 1ST

All solutions should be with proofs, you may quote from the book or from
previous home works

(1) Let A be a Euclidean ring with a Euclidean function d.
(a) Show that d(1) ≤ d(a) for any a ∈ A and a is a unit if and

only if d(a) = d(1).

Solution. Since d(1) ≤ d(1 · a) = d(a), the first part is
obvious. Assume d(1) = d(a). Then, division algorithm
says we can write 1 = qa + r for some q, r ∈ A with
d(r) < d(a) = d(1) or r = 0. Since for any non-zero r,
we have seen that d(1) ≤ d(r) and thus r must be zero.
So, 1 = qa and then a is a unit. If a is a unit, we have
ax = 1 for some x and so d(a) ≤ d(ax) = d(1) ≤ d(a).
So, d(a) = d(1). �

(b) Now assume the function d above only satisfies the sec-
ond condition (division algorithm) not necessarily the first
(d(a) ≤ d(ax)). Then, show that φ(a) = min{d(ax)|x 6=
0} satisfies both the conditions and thus the ring is an
Euclidean domain.

Solution. We first show that φ(a) ≤ φ(ax) for all x 6= 0.
This is obvious, since {axy|y 6= 0} ⊂ {ay|y 6= 0} and
so the minimum of d(axy) is greater than or equal to the
minimum of d(ay).
Next, we show that division algorithm can be done with
φ. Let a 6= 0 and choose an x so that φ(a) = d(ax). If
b ∈ A, we can divide by ax to get b = qax + r with d(r) <
d(ax) = φ(a). Then, b = (qx)a + r as desired. �

(2) Let A be a principal ideal domain. (There are PIDs which are
not Euclidean domains.)
(a) If a, b ∈ A, both non-zero, as usual we can define their

greatest common divisor and least common multiple (lcm
for short). Show that gcd(a, b) and lcm(a, b) exists in A
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for any two non-zero elements a, b. Further, show that
gcd(a, b) lcm(a, b) = ab.

Solution. Consider I = {ra + sb|r, s ∈ A}. Easy to show
that I is an ideal and thus I = dA for some d ∈ A, clearly
non-zero. I claim, d = gcd(a, b). Since a, b ∈ dA, we can
write a = pd, b = qd and thus d|a, d|b. If c|a, c|b, then
since d = ra + sb for some r, s ∈ A, we see that c|d.
Similarly, let J = aA ∩ bA. Again, easy to show that it is
an ideal and then J = lA for some l ∈ A. I will leave you
to check that l = lcm(a, b). The last part I leave you to
check (and is easy). �

(b) Show that any non-zero prime ideal is maximal.

Solution. Let P = pA be a non-zero prime ideal, so that p
is a prime element. If P ⊂ Q, Q 6= A an ideal, we have
Q = qA for some q and q is not a unit. Since p ∈ P ⊂ Q,
we see that q|p and since p is a prime, we see that p = qu,
where u is a unit. Then Q = P, proving maximality of
P. �

(c) Let K be the fraction field of A and let x ∈ K. Assume
we have an equation, xn + a1xn−1 + · · ·+ an−1x + an = 0
where ai ∈ A. Show that x ∈ A.

Solution. Since x ∈ K, we can write x = a/b, a, b ∈
A, B 6= 0. If a = 0, x = 0, so we may as well assume
a 6= 0. If d = gcd(a, b), then a = da′, b = db′ and thus
x = a/b = a′/b′. So, we may assume gcd(a, b) = 1.
Now, multiply our equation by bn to get,

an + a1an−1b + a2an−2b2 + · · ·+ anbn = 0.

Since all terms except the first have a b in them, we see
that b|an. But, gcd(a, b) = 1, and so this can happen only
if b is a unit. Then x = a/b ∈ A. �

(3) Let A = Z[
√
−2] = {a + b

√
−2|a, b ∈ Z}.

(a) Show that φ : A− {0} → N, given by φ(a + b
√
−2) =

a2 + 2b2 is a Euclidean function, so that A is a Euclidean
domain.

Solution. This is identical to the argument for Gaussian
integers. First note that φ(x) ≥ 1 for any x ∈ A−{0} and
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φ(xy) = φ(x)φ(y), which easily shows the first condition
is satisfied.
For division algorithm, we procced as we did in class.
Let x = a + b

√
−2 6= 0 and y = c + d +

√
−2. We wish

to find q, r ∈ A so that y = qx + r with φ(r) < φ(x). Let
X = a2 + 2b2 = x(a − b

√
−2) and Y = y(a − b

√
−2).

Write Y = P + Q
√
−2. Since X is a non-zero integer, by

the usual division algorithm, we can write P = q1X +
r1, Q = q2X + r2, with |ri| ≤ X/2. Thus, Y = (q1 +
q2
√
−2)X + (r1 + r2

√
−2). Since both X, Y are multiples

of a− b
√
−2, we see that r1 + r2

√
−2 = w(a− b

√
−2) for

some w ∈ A. Then, we have y = (q1 + q2
√
−2)x + w,

by cancelling a− b
√
−2. Finally, we have φ(w)X = r2

1 +
2r2

2 ≤ X2/4 + 2X2/4 = 3/4X2 < X2. So, φ(w) < X =
φ(x) which proves what we want. �

(b) Decide whether 11, 13 and/or 17 are primes in A.

Solution. By the first problem in this set, the only units
u ∈ A are the ones with φ(u) = φ(1) = 1 and it is imme-
diate that the only units are ±1.
11 is not a prime, since 3 +

√
−2 divides it. (11 = (3 +√

−2)(3−
√
−2))

17 is not a prime since 17 = 9 + 8 = (3 + 2
√
−2)(3 −

2
√
−2).

The case of 13 is coveredd in the next problem. �

(c) Let p be a prime such that p = 1+ 4n, n a positive integer.
Show that p is not a prime in A only if 4n ≡ 1 mod p.

Solution. If p ∈ Z is a prime but not a prime in A, take
a prime factor a + b

√
−2. Then, b 6= 0, since if it is , we

write p = a(c + d
√
−2) and then p = ac. But a 6= ±1 and

so this means a = p and so p is a prime in A. If b 6= 0,
it is clear that a − b

√
−2 is a prime different from a +

b
√
−2 and a + b

√
−2 also divides p, so (a + b

√
−2)(a =

b
√
−2) = a2 + 2b2 divides p and thus must be p. So,

we get p = a2 + 2b2. This implies in Fp, a2 + 2b2 = 0

and a, b 6= 0. This says (a/b)2 = −2. So, (−2)
p−1

2 =
(a/b)p−1 = 1. Since p = 4n + 1, we get (−2)2n = 4n = 1.
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For p = 13 = 4× 3 + 1, we look at 43 modulo 13. I will
leave you to check that 43 ≡ −1 mod 13 and thus 13 is a
prime in A. �

(4) Let A = Z[i], the ring of Gaussian integers.
(a) Find gcd(3 + 4i, 4− 3i).

Solution. 4− 3i = −i(3 + 4i) and since i is a unit, we see
that the gcd is just 3 + 4i (or 4− 3i). �

(b) Find all positive integers which can be written as a sum
of two squares of integers. (Hint: If a, b, c, d are integers,
then there exists integers A, B such that (a2 + b2)(c2 +
d2) = A2 + B2.)

Solution. If we have N = a2 + b2, let d = gcd(a, b). Then,
a = a1d, b = b1d and so, N = d2(a2

1 + b2
1). Thus, we

see that such integers are precisely the ones got as a2
1 +

b2
1 with gcd 1 and multiplied by any square. So, if we

understand numbers of the form a2 + b2 with gcd(a, b) =
1, we know all the others are got by just multiplying these
by squares. So, we study the ones with gcd 1.
If a prime p divides a2 + b2 since p can not divide a, b, we
see that in Fp, −1 is a square. This immediately says
that either p = 2 or p ≡ 1 mod 4. Thus, a2 + b2 =
2n p1p2 · · · pm for primes pi ≡ 1 mod 4.
Since 2 = 12 + 12 and any p of the above form can be
written as sum of two squares, by the hint any such num-
ber is a sum of squares. So, we see that N = d22nP where
P is a product of primes which are congruent to 1 modulo
4. �

(c) Show that there are infinitely many primes of the form
4n + 3, n ∈N.

Solution. We imitate Euclid’s proof of infinitude of primes.
Assume there are only finitely many such primes, say
p1, . . . , pm. Then, ∏ pi ≡ 1 mod 4 if m is even and ≡
3 mod 4 if m is odd. If m is even, take N = ∏ pi + 2 and
if odd take N = ∏ pi + 4. So, N ≡ 3 mod 4. Notice that
N > 1 and so not a unit and let p be a prime factor. Since
N is odd, p is odd. If p ≡ mod3, then p 6= pi for any i



HOMEWORK 7, DUE THU APR 1ST 5

and thus we have found a new prime of the desired kind.
So, p ≡ 1 mod 4. Then N = ∏ p ≡ 1 mod 4 a contradic-
tion to the choice N ≡ 3 mod 4. �

(5) Let A be a Euclidean domain. As usual, we have G = SL(2, A),
the set of 2 × 2 matrices over A with determinant one. We
have a subgroup of G generated by matrices of the form E =[

1 a
0 1

]
and ET, the transpose of E, where a ∈ A varies,

called the subgroup of elementary matrices and denoted by
E2(A). Show that E2(A) = G. (You probably realize elements
E, ET correspond to row and column operations. The result is
valid for n× n matrices for any n.)

Solution. Let φ be an Euclidean function.

We start with a matrix X =

[
a b
c d

]
∈ SL(2, A). We are

allowed to multiply a row (or column) by some element of A
and add to the other row (or column). First, let us assume that
a 6= 0. Then, we can write b = qa + r and so multiplying the
first column by q and subtracting from the second column,
we can replace b by r. If r 6= 0, φ(r) < φ(a). Now, we can
add a suitable multiple of the second column to the first to
replace a by an s, and again if s 6= 0,φ(s) < φ(r). Clearly,
this can not go on forever and so by this procedure, we can
make the first row to be (a, 0) or (0, a). But, this is the first row
of a determinant one matrix implies, a is a unit and then by
doing the operation twice, we can make a = 1. Again, one can

make a column operations to get X to look like
[

1 0
c d

]
. The

determinant condition forces d = 1. Now, multiply the first
row by c and subtract from the second to convert the matrix
to identity. �

(6) Let K = F11 field with 11 elements and A = K[x], polynomial
ring over K.
(a) Show that x2 + 1 is prime (also called irreducible) in A and

L = A/(x2 + 1)A is a field with 121 elements.

Solution. If x2 + 1 is not irreducible, then since its degree
is 2, the only way it can factorize is x2 + 1 = (x− a)(x−
b). This says, a2 + 1 = 0. So, ord(a) = 4 in F∗11, which
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is a group of order 10 and can not have an element of
order 4. Thus, being a PID, (x2 + 1)A is a maximal ideal
and thus L is a field. Any element in L is the image of
some polynomial P(x) ∈ A. By division algorithm, we
can write P(x) = q(x)(x2 + 1) + r(x), where deg r < 2.
Since P(x) ≡ r(x) in F11, we see that any element in L is
the image of a polynomial of degree at most one. So, as a
F11 vector space, L is generated by images of 1, x. I will
leave you to check that these are linearly independent
and thus L is a vector space of dimension 2 and so has
11× 11 = 121 elements. �

(b) Show that x2 + x + 4 is irreducible in A and thus M =
A/(x2 + x + 4)A is also a field with 121 elements.

Solution. The idea is exactly as before. If it is not irre-
ducible, it has a root a. We complete squares to get (a +
1
2)

2 + (4 − 1
4) = 0. (Notice the fractions make sense in

F11, since 2 is a unit. Let b = a + 1
2 . 1

4 = 3 and thus, we
get b2 + 1 = 0, again ord(b) = 4, which is impossible. M
has 1221 elements is now clear. �

(c) Show that L is isomorphic to M.

Solution. The idea is exactly same. If we change variables
y = x + 1

2 , then x2 + x + 4 = y2 + 1. The change of vari-
able gives an automorphism of A. In other words, con-
sider the map θ : F11[y] → F11[x], given by θ(P(y)) =
P(x + 1

2). This is an automorphism. θ(y2 + 1) = x2 + x +
4 and so L = F11[y]/(y2 + 1) ∼= F11[x]/(x2 + x + 4) =
M �


