HOMEWORK 9, DUE THU APR 8TH

All solutions should be with proofs, you may quote from the book or from previous home works
(1) Let p be a prime number.
(a) Show that the polynomial $x^{n}-p$ is irreducible in $\mathbb{Q}[x]$.

Solution. Notice that $x^{n}-p \in \mathbb{Z}$ and is primitive, since it is monic. Just apply Eisenstein criterion with the prime p.
(b) Show that $f(x)=\frac{x^{p}-1}{x-1}=1+x+\cdots+x^{p-1}$ is irreducible over the rationals. (Hint: Put $x=y+1$ and use Eisenstein.)

Solution. Using the hint, $\frac{x^{p}-1}{x-1}=\frac{(y+1)^{p}-1}{y}$. If we expand by binomial theorem,

$$
(y+1)^{p}=y^{p}+\binom{p}{1} y^{p-1}+\binom{p}{2} y^{p-2}+\cdots+\binom{p}{p-1} y+1 .
$$

Thus, we get,

$$
f(x)=y^{p-1}+\binom{p}{1} y^{p-2}+\binom{p}{2} y^{p-3}+\cdots+\binom{p}{p-1} .
$$

It is an easy exercise to show that, since p is a prime, all the coefficients of y^{k} with $k<p-1$ are divisible by p and since the constant coefficient is $\binom{p}{p-1}=p$, it is not divisible by p^{2}. So, Eisenstein applies.
(c) Write $x^{6}-1$ as a product of irreducible polynomials in $\mathrm{Q}[x]$.

Proof.

$$
\begin{aligned}
x^{6}-1 & =\left(x^{3}-1\right)\left(x^{3}+1\right) \\
& =(x-1)\left(x^{2}+x+1\right)(x+1)\left(x^{2}-x+1\right)
\end{aligned}
$$

$x-1, x+1$ are irreducible (linear polynomials are always irreducible), $x^{2}+x+1$ is irreducible by using part (b) with $p=3$ and $x^{2}-x+1$ is irreducible, since if you substitute $-x$ for x in this, we just get $x^{2}+x+1$. So, the above is the required product.
(2) Let $A=\mathbb{Z}[\sqrt{-5}]$.
(a) Show that the only units in A are ± 1.

Solution. If $x \in A$ is a unit, we have $x y=1$ for some $y \in A$. Taking complex conjugates (which are still in A), we see that \bar{x}, the complex conjugate of x is also a unit and thus so is $x \bar{x}$. If $x=a+b \sqrt{-5}, x \bar{x}=a^{2}+5 b^{2} \in \mathbb{Z}$ and a unit, so must be ± 1. The only solutions are $a=$ $\pm 1, b=0$.
(b) Show that $3,2+\sqrt{-5}$ and $2-\sqrt{-5}$ are irreducible in A.

Solution. The proof is similar to the previous step.
Write $3=x y$ with $x, y \in A$ and we wish to show that one of them is a unit. By taking complex conjugates and multiplying, we get $9=x \bar{x} y \bar{y}$ and if $x=a+b \sqrt{-5}, y=$ $c+d \sqrt{-5}$, this gives $9=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$. If one of these is 9 , the other is one and then that would be a unit etc. So,we may assume $a^{2}+5 b^{2}=3$. If $b \neq 0$, the left hand side is at least 5 , so $b=0$ and then we have $a^{2}=3$ which is absurd.
Similarly, write $2+\sqrt{-5}=x y$ and as before, we get $9=$ $\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$ which will again say one of x, y is a unit. $2-\sqrt{-5}$ case is identical.
(c) Prove that A is not a PID, using $3^{2}=(2+\sqrt{-5})(2-$ $\sqrt{-5})$.

Solution. This follows immediately from the previous part, since in a PID, irreducibility is same as prime.
(3) Let $A=\mathbb{C}[x, y] / I$ where I is the principal ideal generated by $y^{2}-x^{3}-x$. We also have an inclusion $B=\mathbb{C}[x] \subset A$ as a subring.
(a) Show that $y^{2}-x^{3}-x$ is irreducible in $\mathbb{C}[x, y]$ and so, A is an integral domain.

Solution. Treat $p=y^{2}-x^{3}-x \in B[y]$ as a polynomial in y over B. Since $\operatorname{deg}_{y} p=2$, any factor of p must have degree 0,1 or 2 in y. If it has a factor of degree zero, then this factor is an element of B and so we must have $q(x) \mid p$. If $q(x)$ is not a unit, then $\operatorname{deg}_{x} q>0$ and so it has a root, say $a \in \mathbb{C}$. Since $p=p(x, y)=q(x) R(x, y)$, we get $p(a, y)=0$. But, $p(a, y)=y^{2}-a^{3}-a \neq 0$. So, p has a linear factor and since it is monic, immediate that this factor must be monic. In other words, we should have $p(x, y)=(y-q(x))(y-r(x))$ for $q, r \in B$.

$$
(y-q)(y-r)=y^{2}-(q+r) y+q r
$$

So, $q+r=0$ and then $q^{2}=x^{3}+x$. So, any prime factor of $x^{3}+x$ (in B) must occur with multiplicity 2 . But $x^{3}+$ $x=x(x+i)(x-i)$, has three irreducible factors with multiplicity one. This proves p is irreducible.
(b) Show that all maximal ideals of B are of the form $(x-$ a) B for some $a \in \mathbb{C}$. (Hint: Fundamental Theorem of Algebra).

Solution. This is just the hint. Maximal ideals of a PID are generated by prime (=irreducible) elements. If $p(x) \in B$ and $\operatorname{deg} p=0$, then p is a constant (so a unit if nonzero). If $\operatorname{deg} p=1$, then they are irreducible and any linearl polynomial up to unit is just of the form $x-a$, $a \in \mathbb{C}$. If $\operatorname{deg} p>1$, let a be a root (by FTA) then division algorithm gives $p(x)=(x-a) q(x)$ and $\operatorname{deg} q>0$, so p is not irreducible.
(c) Show that if $M \subset A$ is a maximal ideal of A, then $M \cap B$ is a maximal ideal of B.

Solution. With no assumptions on the rings, we first check that $M \cap B$ is a prime ideal. If $\alpha \beta \in M \cap B$ where $\alpha, \beta \in B$, since M is maximal and hence prime, one of them must be in M and then it is also in $M \cap B$.
We have an inclusion $K=B / M \cap A \subset B / M=L$. Since M is maximal, L is a field. We wish to show that K is a field. Let y denote the image of y in L, by abuse of notation. Then, by division algorithm in A, one easily checks that any element of L can be written uniquely as
$a+b y$ with $a, b \in K$ and of course, we have $y^{2}=t \in K$, where t is the image of $x^{3}+x$ in K. Let $0 \neq u \in K$. Since L is a field, u has an inverse in L, say, $a+b y$ with $a, b \in K$. Then, $u a+u b y=1$. This says $u a=1, u b=0$, by our uniqueness of such expressions. Thus, $и a=1$ which means u has an inverse in K.
(4) Let A be a PID.
(a) Let $R=K_{1} \times K_{2} \times \cdots \times K_{n}$, where K_{i} s are fields, with the usual product ring structure. Let $a_{1}, \ldots, a_{m} \in R$ such that the ideal generated by these is the whole ring R. Show that we can find $q_{2}, q_{3}, \ldots, q_{m} \in R$ such that $a_{1}+q_{2} a_{2}+$ $q_{3} a_{3}+\cdots+q_{m} a_{m}$ is a unit in R.

Solution. Write $a_{1}=\left(u_{1}, \ldots, u_{m}\right)$ where $u_{i} \in K_{i}$. If all $u_{i} \neq 0$, then a_{1} is unit and we can take $q_{i}=0$ for all i. So assume some of them are zero and reordering the fields, we may assume $u_{i} \neq 0$ for $i \leq r$ and $u_{i}=0$ for $i>r$. Since a_{i} s generate the whole ring, there must be some $a_{i}, i>1$ such that if we write $a_{i}=\left(v_{1}, \ldots, v_{m}\right)$, then $v_{r+1} \neq 0$. Again, we may assume $i=2$. Assume $v_{s} \neq 0$ for $r<s \leq r^{\prime}$. Then take $q_{2}=(0,0, \ldots, 1, \ldots 1)$ where the first r are zeroes. Then, $q_{2} a_{2}$ has zeroes in the first r places and non-zero entries between r and r^{\prime}. So, when we take $a_{1}+q_{2} a_{2}$, it has non-zero entries from 1 to r^{\prime}. If $r^{\prime} \neq m$, can assume that a_{3} has a non-zero entry in the r^{\prime} th place and continue.
(b) Let $a_{1}, \ldots, a_{m} \in A$ be such that $\operatorname{gcd}\left(a_{1}, \ldots, a_{m}\right)=1$. Also assume that $m \geq 3$. Then show that we can find

$$
p_{2}, \ldots, p_{m}, q_{3}, \ldots, q_{m} \in A
$$

such that,

$$
\operatorname{gcd}\left(a_{1}+p_{2} a_{2}+\cdots+p_{m} a_{m}, a_{2}+q_{3} a_{3}+\cdots+q_{m} a_{m}\right)=1
$$

Solution. If $a_{1} \neq 0$, choose $p_{i}=0$ for all i. If not choose p_{i} so that $a_{1}+p_{2} a_{2}+\cdots+p_{m} a_{m} \neq 0$, which can be done since at least one of the $a_{i} \neq 0$. So, now onwards, let us assume that $a_{1} \neq 0$. If a_{1} is a unit, we may choose $q_{i}=0$, so assume not. Let x_{1}, \ldots, x_{n} be all the primes dividing a_{1}.

We look at $R=A / \Pi x_{i} A=K_{1} \times \cdots \times K_{n}$ where $K_{i}=$ $A / p_{i} A$, by Chinese remainder theorem. Notice that $K_{i} \mathrm{~S}$ are fields. We call the images of $a_{i} \in R$ still a_{i} and since $a_{1}=0 \in R$, we see that a_{2}, \ldots, a_{m} generate R, since the ideal generated by a_{1}, \ldots, a_{m} in A is all of A. So, by the previous part, we can find $q_{3}, \ldots, q_{m} \in R$ so that $a_{2}+$ $q_{3} a_{3}+\cdots+q_{m} a_{m}$ is a unit in R. Since $\pi: A \rightarrow R$ is onto, we may lift q_{i} s to A and call them still q_{i}. Then, we see that $\pi\left(a_{2}+q_{3} a_{3}+\cdots+q_{m} a_{m}\right)$ is a unit in R. This means, none of the x_{i} divides $a_{2}+q_{3} a_{3}+\cdots+q_{m} a_{m}$ and this just means $\operatorname{gcd}\left(a_{1}, a_{2}+q_{3} a_{3}+\cdots+q_{m} a_{m}\right)=1$.
(c) Let $a_{1}, \ldots, a_{m} \in A$ with $\operatorname{gcd}\left(a_{1}, \ldots, a_{m}\right)=1$. Show that we can find an invertible matrix U of size m so that,

$$
\left(a_{1}, \ldots, a_{m}\right) U=(1,0, \ldots, 0)
$$

(Do this for $m \leq 3$, which has all the necessary ideas for full credit.)

Solution. If $m=1$, then a_{1} is a unit and we can take $U=$ $\left[a_{1}^{-1}\right]$. If $m=2$, since the ideal generated by a_{1}, a_{2} is A, we have an equation $1=a_{1} b_{1}+a_{2} b_{2}$ for some $b_{1}, b_{2} \in A$. Then, take U to be,

$$
U=\left[\begin{array}{cc}
b_{1} & -a_{2} \\
b_{2} & a_{1}
\end{array}\right]
$$

So, now assume that $m \geq 3$. We assume $m=3$ for notational simplicity and contains the basic ideas. By part (b) we can find p_{2}, p_{3}, q_{3} so that $b_{1}=a_{1}+p_{2} a_{2}+p_{3} a_{3}$ and $b_{2}=a_{2}+q_{3} a_{3}$ have gcd 1. Let,

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
p_{2} & 1 & 0 \\
p_{3} & q_{3} & 1
\end{array}\right]
$$

Then, A is lower triangular with 1 s on the diagonal, so has determinant one and in particular, invertible. Note that $\left(a_{1}, a_{2}, a_{3}\right) A=\left(b_{1}, b_{2}, a_{3}\right)$.
Since $\operatorname{gcd}\left(b_{1}, b_{2}\right)=1$, we have $c_{1}, c_{2} \in A$ such that $c_{1} b_{1}+$ $c_{2} b_{2}=1$. Now let

$$
B=\left[\begin{array}{ccc}
c_{1} & -b_{2} & 0 \\
c_{2} & b_{1} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then, $\operatorname{det} B=1$ and $\left(b_{1}, b_{2}, a_{3}\right) B=\left(1,0, a_{3}\right)$. Finally, let

$$
C=\left[\begin{array}{ccc}
1 & 0 & -a_{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Again, $\operatorname{det} C=1$ and $\left(1,0, a_{3}\right) C=(1,0,0)$. So, take $U=$ ABC.
(d) Using the above and imitating the proof we did in class, show that any torsion free finitely generated module over A is free.

Solution. Let M be a torsion free finitely generated module over A. Pick $e_{1}, \ldots, e_{n} \in M$ a set of generators where n is minimum. We wish to show that these are linearly independent. If not, we have a relation $a_{1} e_{1}+\cdots+a_{n} e_{n}=$ 0 with at least one $0 \neq a_{i} \in A$. So, we can consider $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$. As we did in class, we may assume $d=1$, since otherwise, write $a_{i}=d b_{i}$ and then $d\left(b_{1} e_{1}+\cdots b_{n} e_{n}\right)=0$. Since M is torsion free, we get $b_{1} e_{1}+\cdots+b_{n} e_{n}=0$ and $\operatorname{gcd}\left(b_{1}, \ldots, b_{n}\right)=1$.
So, we may assume $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$. Now, by part (c), we have an invertible $n \times n$ matrix U such that $\left(a_{1}, \ldots, a_{n}\right) U=$ (1,0,..., 0). Write

$$
U^{-1}\left[\begin{array}{c}
e_{1} \\
\vdots \\
e_{n}
\end{array}\right]=\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right]
$$

Then, it is clear that w_{i} s generate M since U is invertible. Also, we have

$$
\left[a_{1}, \ldots, a_{n}\right]\left[\begin{array}{c}
e_{1} \\
\vdots \\
e_{n}
\end{array}\right]=0,
$$

which we can rewrite as,

$$
\left[a_{1}, \ldots, a_{n}\right] U U^{-1}\left[\begin{array}{c}
e_{1} \\
\vdots \\
e_{n}
\end{array}\right]=0
$$

which says,

$$
[1,0, \ldots, 0]\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right]=0
$$

This just says $w_{1}=0$, so M is generated by w_{2}, \ldots, w_{n}, contrary to our choice of n.

