MIDTERM, MATH 430, DUE THU MAR 15TH

All solutions should be with proofs, you may quote from the book or from previous home works
(1) If G is a finite abelian group with $n \mid o(G)$, show that number of solutions of $x^{n}=e$ in G is a multiple of n.

Solution. By the theorem proved in class, we can write $G=$ $G_{1} \times G_{2} \times \cdots \times G_{m}$ where G_{i} is a cyclic group of order, say r_{i}. Then $o(G)=\Pi r_{i}$ and thus $n \mid \prod r_{i}$. Then, it is elementary to see that $n \mid \Pi \operatorname{gcd}\left(n, r_{i}\right)$. So, let $s_{i}=\operatorname{gcd}\left(n, r_{i}\right)$. Then, since $s_{i} \mid r_{i}$ and G_{i} is cyclic of order r_{i}, the set of solutions to $x^{n}=e$ wih $x \in G_{i}$ are precisely those $x \in G_{i}$ with $x^{s_{i}}=e$ (since $o(x)$ divides both n, r_{i}). These form a cyclic subgroup H_{i} of order s_{i} in G_{i}. Then, it is clear that the set of elements in G with $x^{n}=e$ is precisely $H_{1} \times H_{2} \times \cdots \times H_{n}$ and thus has order $\prod s_{i}$ and so n divides this number.
(2) As usual, for a subgroup H of G, we write $N(H)$ to be the normalizer of H in $G, H=\left\{g \in G \mid g H g^{-1} \subset H\right\}$. If P is a p-Sylow subgroup of a finite group G, show that $N(N(P))=$ $N(P)$.

Solution. Since P is a normal subgroup of $N(P)$ it follows that P is the unique p-Sylow subgroup of $N(P)$. Now, let $g \in$ $N(N(P))\left(N(P) \subset N(N(P))\right.$ is clear). Then, $g N(P) g^{-1}=$ $N(P)$ and since $g P g^{-1}$ is a p-Sylow subgroup and contained in $N(P)$, we see that $g \mathrm{Pg}^{-1}=P$ and then $g \in N(P)$.
(3) If for an $a \in G, G$ any group, one can solve the equation $x^{2} a x=a^{-1}$, show that $a=b^{3}$ for some $b \in G$.

Solution. We are given that there is an $x \in G$ such that,

$$
\begin{equation*}
x^{2} a x=a^{-1} . \tag{1}
\end{equation*}
$$

Taking inverses, we get,

$$
\begin{equation*}
x^{-1} a^{-1} x^{-2}=a . \tag{2}
\end{equation*}
$$

Substituting (2) in (1) for a, we get, $a^{-1}=x^{2}\left(x^{-1} a^{-1} x^{-2}\right) x=$ $x a^{-1} x^{-1}$, which says $a x=x a$ and so these commute. So, one becomes, $x^{3}=a^{-2}$ and thus, $a^{3} x^{3}=a$. So, $a=(a x)^{3}$.
(4) If G is a group of order 385 , show that its 11 -Sylow subgroup is normal and its 7-Sylow subgroup is in the center.
Solution. We use Sylow theorems. $385=5 \times 7 \times 11$. The number of 11 -Sylow subgroups is $1 \bmod 11$ and must divide 35 and thus must be 1 . So, it is normal.

Similarly, the number of 7-Sylow subgroups is $1 \bmod 7$ and must divide 55. Again, this forces it to be 1 and thus it is normal. Let $H=\mathbb{Z} / 7 \mathbb{Z}$ be the 7-Sylow subgroup. Let $Z(H)=$ $\{g \in G \mid g h=h g$ for all $h \in H\} . Z(H)$ is a subgroup of G and contains H. If $K=\mathbb{Z} / 11 \mathbb{Z}$ is the 11-Sylow subgroup, we get a homomorphism $K \rightarrow \operatorname{Aut}(H)$ by conjugation action. But, $o(\operatorname{Aut}(H))=6$ and so there are no non-trivial such homomorphism and this says $K \subset Z(H)$ and a similar argument will show that all 5-Sylow subgroups are contained in $Z(H)$. Thus, 5,7 and 11 divide $Z(H)$ and so $Z(H)=G$. So, H is in the center of G.
(5) Let $G=\mathbb{Z} / 2 \mathbb{Z}=\{e, \sigma\}$, act on $\mathbb{F}_{p} v_{1}+\mathbb{F}_{p} v_{2}$, a vector space of dimension 2 with basis v_{1}, v_{2} where p is a prime, by $\sigma\left(v_{1}\right)=$ $v_{2}, \sigma\left(v_{2}\right)=v_{1}$. Calculate the number of distinct orbits.

Solution. Since $o(G)=2$, any orbit can have either one or two elements. We count them separately. If $x=a_{i} v_{1}+a_{2} v_{2}$, $\sigma(x)=a_{1} v_{2}+a_{2} v_{1}$ and thus $\sigma(x)=x$ if and only if $a_{1}=a_{2}$. Thus, the orbits with one element are precisely of the form $a\left(v_{1}+v_{2}\right)$ where $a \in \mathbb{F}_{p}$ and so there are precisely p of them. The remaining $p^{2}-p$ elements are paired into orbits containing 2 elements and thus there are $\frac{p^{2}-p}{2}$ of them. So, the total number of orbits is $p+\frac{p^{2}-p}{2}$.
(6) Calculate the number of distinct group homomorphisms from $\mathbb{Z} / 4 \mathbb{Z}$ to $\mathbb{Z} / 10 \mathbb{Z} \times \mathbb{Z} / 16 \mathbb{Z}$.

Solution. Any homomorphism $f: G \rightarrow A \times B$, where G, A, B are groups is just a pair of homomorphisms $f_{1}: G \rightarrow A, f_{2}$: $G \rightarrow B$ and $f(g)=\left(f_{1}(g), f_{2}(g)\right)$. So, we calculate the number of homomorphisms to the two groups separately.

Any homomorphism from $\mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 10 \mathbb{Z}$ must have the image contained the subgroup $\mathbb{Z} / 2 \mathbb{Z} \subset \mathbb{Z} / 10 \mathbb{Z}$, since $\operatorname{gcd}(4,10)=2$. Thus, this number is just the set of homomorphisms from $\mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ and there are precisely 2 of them. Similar argument says the image of $\mathbb{Z} / 4 \mathbb{Z} \rightarrow$ $\mathbb{Z} / 16 \mathbb{Z}$ must be contained in $\mathbb{Z} / 4 \mathbb{Z} \subset \mathbb{Z} / 16 \mathbb{Z}(\operatorname{gcd}(4,16)=$ 4) and the set of homomorphisms from $\mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 4 \mathbb{Z}$ has cardinality 4 . So, the number of homomorphisms $\mathbb{Z} / 4 \mathbb{Z} \rightarrow$ $\mathbb{Z} / 10 \mathbb{Z} \times \mathbb{Z} / 16 \mathbb{Z}$ is $2 \times 4=8$.

