## FINAL, DUE MAY 13TH

All solutions should be with proofs, you may quote from the book.
(1) Calculate the number of distinct group homomorphisms from $\mathbb{Z} / n \mathbb{Z}$ to $\mathbb{C}^{*}$, the group of non-zero complex numbers under multiplication.
(2) Let $G=\mathbb{Z} \times \mathbb{Z}$ and let $f: A \rightarrow B$ be an onto homomorphism of abelian groups. Given a homomorphism $\phi: G \rightarrow B$, show that there exists a homomorphism $\psi: G \rightarrow A$ such that $f \circ$ $\psi=\phi$. Give an example to show that this is false if we do not assume $A$ is abelian.
(3) If $n_{1}, \ldots, n_{r}$ are positive integers and pairwise relatively prime (i.e. $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ if $i \neq j$ ), show that the commutative $\operatorname{ring}\left(\mathbb{Z} / n_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / n_{2} \mathbb{Z}\right) \times \cdots \times\left(\mathbb{Z} / n_{r} \mathbb{Z}\right)$ is isomorphic to $\mathbb{Z} / n_{1} n_{2} \cdots n_{r} \mathbb{Z}$.
(4) Show that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.
(5) Let $X^{3}+a X+1 \in \mathbb{Z}[X]$. Find for what values of $a \in \mathbb{Z}$ is this polynomial not irreducible over $\mathbb{Q}$.
(6) Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Find a $u \in K$ such that $K=\mathbb{Q}(u)$. (Caution: The $u$ is not unique.)
(7) Let $L=D(t, u)$, the fraction field of the polynomial ring $D[t, u]$, in two variables where $D$ is an infinite field of characteristic $p>0$. Let $K=D\left(t^{p}, u^{p}\right) \subset L$. Show that there are infinitely many distinct subfields $M \subset L$ with $K \subset M$.
(8) Let $p$ be a prime and let $K$ be the splitting field of $X^{p}-1$ over $Q$. Determine the Galois group $G(K / Q)$.

