FINAL, DUE MAY 13TH

All solutions should be with proofs, you may quote from the book.

- Calculate the number of distinct group homomorphisms from Z/nZ to C*, the group of non-zero complex numbers under multiplication.
- (2) Let $G = \mathbb{Z} \times \mathbb{Z}$ and let $f : A \to B$ be an onto homomorphism of abelian groups. Given a homomorphism $\phi : G \to B$, show that there exists a homomorphism $\psi : G \to A$ such that $f \circ \psi = \phi$. Give an example to show that this is false if we do not assume *A* is abelian.
- (3) If n_1, \ldots, n_r are positive integers and pairwise relatively prime (i.e. $gcd(n_i, n_j) = 1$ if $i \neq j$), show that the commutative ring $(\mathbb{Z}/n_1\mathbb{Z}) \times (\mathbb{Z}/n_2\mathbb{Z}) \times \cdots \times (\mathbb{Z}/n_r\mathbb{Z})$ is isomorphic to $\mathbb{Z}/n_1n_2 \cdots n_r\mathbb{Z}$.
- (4) Show that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.
- (5) Let $X^3 + aX + 1 \in \mathbb{Z}[X]$. Find for what values of $a \in \mathbb{Z}$ is this polynomial not irreducible over \mathbb{Q} .
- (6) Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Find a $u \in K$ such that $K = \mathbb{Q}(u)$. (Caution: The *u* is not unique.)
- (7) Let L = D(t, u), the fraction field of the polynomial ring D[t, u], in two variables where D is an infinite field of characteristic p > 0. Let $K = D(t^p, u^p) \subset L$. Show that there are infinitely many distinct subfields $M \subset L$ with $K \subset M$.
- (8) Let *p* be a prime and let *K* be the splitting field of $X^p 1$ over \mathbb{Q} . Determine the Galois group $G(K/\mathbb{Q})$.