HOMEWORK 10, DUE THU APR 15TH

All solutions should be with proofs, you may quote from the book or from previous home works
(1) Let A be a PID. A module D is called divisible if for any nonzero $a \in A$, the multiplication map $D \xrightarrow{a} D$ is onto.
(a) Show that K, the fraction field of A (which is naturally an A-module) is divisible. Also, if D is divisible, any quotient module of D is divisible.
(b) Let $N \subset M$ are modules and let $f: N \rightarrow D$ is a homomorphism, where D is divisible. Show that there is a homomorphism $g: M \rightarrow D$ such that $g(n)=f(n)$ for all $n \in N$. (Hint: You will need Zorn's lemma).
(c) If D is a divisible module and is a submodule of a module M, show that there is a submodule $N \subset M$ such that $N \oplus D \cong M$. (This means, $N+D=M, N \cap D=0$).
(d) Let $M=A / p A$ where $p \in A$ is a prime. Show that M is the submodule of some divisible module.
(2) We consider the filed extension, $\mathbb{Q} \subset \mathbb{R}$.
(a) Show that $\sqrt{2}, \sqrt{3} \in \mathbb{R}$ are algebraic over Q. Find a polynomial $P(X) \in \mathbb{Q}[X]$ of degree 4 such that $P(\sqrt{2}+\sqrt{3})=$ 0 . Decide whether this polynomial is irreducible over \mathbb{Q}.
(b) Show that $\sqrt{2}+{ }^{3} \sqrt{5}$ is algebraic over Q of degree 6 .
(3) We say an element in $a \in \mathbb{C}$ is an algebraic integer, if it satisfies an equation $a^{n}+a_{1} a^{n-1}+\cdots+a_{n}=0$ where $a_{i} \in \mathbb{Z}$. For example, $\sqrt{-1}, 2^{\frac{1}{5}}$ are algebraic integers.
(a) Show that if $a \in \mathbb{C}$ is algebraic over \mathbb{Q}, there is some positive integer N such that $N a$ is an algebraic integer.
(b) If $a \in \mathbb{Q}$ is an algebraic integer, show that $a \in \mathbb{Z}$.
(c) If a is an algebraic integer, show that the ring $\mathbb{Z}[a]$ is a finitely generated module over \mathbb{Z}.
(d) Show that if a, b are algebraic integers, so are $a+b, a b$. (Do not attempt to find the polynomials satisfied by these.)
(4) Show that $\cos r \pi, \sin r \pi$ are algebraic, where $r \in \mathbb{Q}$ and the angles are in radians as usual. (De Moivre's theorem).
(5) Let F be a finite field with say q elements.
(a) Show that the characteristic of F is a prime number p and $q=p^{m}$ for some m.
(b) Show that $a^{q}=a$ for all $a \in F$.
(c) Let $F \subset L$ be a field extension and let $a \in L$ algebraic over F. Show that $a^{q^{m}}=a$ for some positive integer m.

