HOMEWORK 10, DUE THU APR 15TH

All solutions should be with proofs, you may quote from the book or from previous home works

- (1) Let *A* be a PID. A module *D* is called *divisible* if for any non-zero $a \in A$, the multiplication map $D \xrightarrow{a} D$ is onto.
 - (a) Show that *K*, the fraction field of *A* (which is naturally an *A*-module) is divisible. Also, if *D* is divisible, any quotient module of *D* is divisible.
 - (b) Let $N \subset M$ are modules and let $f : N \to D$ is a homomorphism, where *D* is divisible. Show that there is a homomorphism $g : M \to D$ such that g(n) = f(n) for all $n \in N$. (Hint: You will need Zorn's lemma).
 - (c) If *D* is a divisible module and is a submodule of a module *M*, show that there is a submodule $N \subset M$ such that $N \oplus D \cong M$. (This means, N + D = M, $N \cap D = 0$).
 - (d) Let M = A/pA where $p \in A$ is a prime. Show that M is the submodule of some divisible module.
- (2) We consider the filed extension, $\mathbb{Q} \subset \mathbb{R}$.
 - (a) Show that $\sqrt{2}$, $\sqrt{3} \in \mathbb{R}$ are algebraic over \mathbb{Q} . Find a polynomial $P(X) \in \mathbb{Q}[X]$ of degree 4 such that $P(\sqrt{2} + \sqrt{3}) = 0$. Decide whether this polynomial is irreducible over \mathbb{Q} .
 - (b) Show that $\sqrt{2} + \sqrt[3]{5}$ is algebraic over Q of degree 6.
- (3) We say an element in $a \in \mathbb{C}$ is an algebraic *integer*, if it satisfies an equation $a^n + a_1 a^{n-1} + \cdots + a_n = 0$ where $a_i \in \mathbb{Z}$. For example, $\sqrt{-1}$, $2^{\frac{1}{5}}$ are algebraic integers.
 - (a) Show that if $a \in \mathbb{C}$ is algebraic over \mathbb{Q} , there is some positive integer *N* such that *Na* is an algebraic integer.
 - (b) If $a \in \mathbb{Q}$ is an algebraic integer, show that $a \in \mathbb{Z}$.

HOMEWORK 10, DUE THU APR 15TH

- (c) If *a* is an algebraic integer, show that the ring $\mathbb{Z}[a]$ is a finitely generated module over \mathbb{Z} .
- (d) Show that if a, b are algebraic integers, so are a + b, ab. (Do not attempt to find the polynomials satisfied by these.)
- (4) Show that $\cos r\pi$, $\sin r\pi$ are algebraic, where $r \in \mathbb{Q}$ and the angles are in radians as usual. (De Moivre's theorem).
- (5) Let *F* be a finite field with say *q* elements.
 - (a) Show that the characteristic of *F* is a prime number *p* and $q = p^m$ for some *m*.
 - (b) Show that $a^q = a$ for all $a \in F$.
 - (c) Let $F \subset L$ be a field extension and let $a \in L$ algebraic over *F*. Show that $a^{q^m} = a$ for some positive integer *m*.