HOMEWORK 11, DUE THU APR 22ND

All solutions should be with proofs, you may quote from the book or from previous home works
(1) Find the degrees of the splitting fields over \mathbb{Q} for the following polynomials.
(a) $X^{4}+1$.
(b) $X^{6}+X^{3}+1$.
(2) If p is a prime number, show that the splitting field of $X^{p}-1$ over \mathbb{Q} has degree $p-1$.
(3) Let $P(X)=X^{3}+a X+b, a, b \in \mathbb{Q}$ and let K its splitting field over \mathbb{Q}. Find all possible degrees of K over the rationals.
(4) Let $\phi: \mathbb{Q}\left(2^{1 / 3}\right) \rightarrow \mathbb{Q}\left(2^{1 / 3}\right)$ be an automorphism. Show that ϕ is the identity.
(5) Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a field automorphism. Show that ϕ is the identity. (Hint: Show that if $a<b, \phi(a)<\phi(b)$.)

