HOMEWORK 11, DUE THU APR 22ND

All solutions should be with proofs, you may quote from the book or from previous home works

- (1) Find the degrees of the splitting fields over Q for the following polynomials.
 (a) X⁴ + 1.
 - (b) $X^6 + X^3 + 1$.
- (2) If *p* is a prime number, show that the splitting field of $X^p 1$ over \mathbb{Q} has degree p 1.
- (3) Let $P(X) = X^3 + aX + b$, $a, b \in \mathbb{Q}$ and let *K* its splitting field over \mathbb{Q} . Find all possible degrees of *K* over the rationals.
- (4) Let $\phi : \mathbb{Q}(2^{1/3}) \to \mathbb{Q}(2^{1/3})$ be an automorphism. Show that ϕ is the identity.
- (5) Let $\phi : \mathbb{R} \to \mathbb{R}$ be a field automorphism. Show that ϕ is the identity. (Hint: Show that if a < b, $\phi(a) < \phi(b)$.)