HOMEWORK 12, DUE THU APR 29TH

All solutions should be with proofs, you may quote from the book or from previous home works

- (1) Let $K \subset L$ be a finite extension of fields and let $K \subset M \subset L$, where *M* is the set of all elements in *L* separable over *K*. We have seen in class that *M* is a subfield of *L*.
 - (a) Show that *L* is purely inseparable over *M*. That is, either L = M or characteristic is p > 0 and if $a \in L$, then $a^q \in M$ for some $q = p^n$.
 - (b) Show that the separable degree [L : K]_s divides [L : K]. If [L:K]_s = m > 1, show that the characteristic of K is a prime p and m is a power of p.
- (2) Let $K \subset L$ be a field extension. A map $D : L \to L$ is called a *K*-derivation, if it is a *K*-linear map and D(ab) = aD(b) + bD(a) (Leibniz formula) for all $a, b \in L$.
 - (a) Show that D(x) = 0 for all $x \in K$.
 - (b) If D_1, D_2 are derivations, show that $D_1 + D_2$ is a derivation and aD for $a \in L$ defined as (aD)(x) = aD(x) for $x \in L$ are derivations. Thus, show that \mathbb{T} = set of all derivations form an *L*-vector space.
 - (c) Assume *L* is a finite extension of *K*. Show that $\mathbb{T} = 0$ if and only if *L* is a separable extension of *K*.
- (3) A field *K* is called *perfect* if either its characteristic is zero or it is a prime number *p* and every element in *K* has a *p*th root. Show that, if *K* is perfect, any finite extension of *K* is separable.
- (4) Let *K* be a finite field with *q* elements.
 - (a) Let $G(X) = X^{q^n} X \in K[X]$ and let *L* be the splitting field of *G*. Show that [L:K] = n.

- (b) Let $f(X) \in K[X]$ be irreducible. Show that f divides $X^{q^n} X$ if and only if deg f divides n.
- (c) Show that,

$$X^{q^n} - X = \prod_{d|n} \prod_{f_d \text{ irr}} f_d(X),$$

where $f_d(X) \in K[X]$ are irreducible of degree *d* and monic in *X*.

(5) Let $K \subset \overline{K}$ be a fixed inclusion of a field in an algebraic closure. Let $P(X) \in K[X]$ be any polynomial and let $L = K(a_1, \ldots, a_n) \subset \overline{K}$, where a_i s are the roots of P, so L is a splitting field. If $\sigma : L \to \overline{K}$ is any homomorphism with $\sigma(x) = x$ for all $x \in K$, show that $\sigma(L) = L$ and thus it is an element of G(L/K) as defined in class.