HOMEWORK 13

All solutions should be with proofs, you may quote from the book or from previous home works

- (1) Prove that a symmetric polynomial in $x_1, ..., x_n$ is a polynomial in the elementary symmetric functions in $x_1, ..., x_n$. (I do not know a short and elementary proof of this with the material we have covered).
- (2) Let $\alpha_1, \ldots, \alpha_n$ be the roots of $f(X) = X^n + a_1 X^{n-1} + a_2 X^{n-1} + \cdots + a_n$ and let $s_k = \sum_{i=1}^n \alpha_i^k$. Let $g(u) = u^n f(\frac{1}{u}) = 1 + a_1 u + a_2 u^2 + \cdots + a_n u^n$. (a) Show that $g'(u) = -g(u)(s_1 + s_2 u + s_3 u^2 + \cdots)$.
 - (b) Prove *Newton's identities*, namely, $s_k + a_1s_{k-1} + a_2s_{k-1} + \cdots + a_{k-1}s_1 + ka_k = 0$ for $1 \le k \le n$ and,
 - (c) $s_k + a_1 s_{k-1} + \dots + a_n s_{k-n} = 0$ for k > n.
- (3) Let *n* be a positive integer and denote by $\omega = e^{2\pi i/n}$.
 - (a) Show that a complex number *z* with *zⁿ* = 1 and for any *k*, 1 ≤ *k* < *n*, *z^k* ≠ 1 is of the form *ω^r* where gcd(*r*, *n*) = 1. These are called *primitive* roots of unity and there are precisely *φ*(*n*) of them, where *φ* is the Euler function.
 - (b) Show that $\mathbb{Q}(\omega)$ is the splitting field of $X^n 1 \in \mathbb{Q}[X]$.
 - (c) Show that the Galois group $G(\mathbb{Q}(\omega)/\mathbb{Q})$ is isomorphic to the group of units in the ring $\mathbb{Z}/n\mathbb{Z}$.
- (4) If *K* is a field of characteristic zero and contains ω (as in the previous problem), show that the Galois group of the polynomial *Xⁿ* − *a*, *a* ∈ *K* is abelian.
- (5) Let *K* be the splitting field over \mathbb{Q} of $X^4 2x^2 1$. Calculate $G(K/\mathbb{Q})$ and find all fields *F* such that $\mathbb{Q} \subset F \subset K$.