HOMEWORK 13

All solutions should be with proofs, you may quote from the book or from previous home works
(1) Prove that a symmetric polynomial in x_{1}, \ldots, x_{n} is a polynomial in the elementary symmetric functions in x_{1}, \ldots, x_{n}. (I do not know a short and elementary proof of this with the material we have covered).
(2) Let $\alpha_{1}, \ldots, \alpha_{n}$ be the roots of $f(X)=X^{n}+a_{1} X^{n-1}+a_{2} X^{n-1}+$ $\cdots+a_{n}$ and let $s_{k}=\sum_{i=1}^{n} \alpha_{i}^{k}$. Let $g(u)=u^{n} f\left(\frac{1}{u}\right)=1+a_{1} u+$ $a_{2} u^{2}+\cdots+a_{n} u^{n}$.
(a) Show that $g^{\prime}(u)=-g(u)\left(s_{1}+s_{2} u+s_{3} u^{2}+\cdots\right)$.
(b) Prove Newton's identities, namely, $s_{k}+a_{1} s_{k-1}+a_{2} s_{k-1}+$ $\cdots+a_{k-1} s_{1}+k a_{k}=0$ for $1 \leq k \leq n$ and,
(c) $s_{k}+a_{1} s_{k-1}+\cdots+a_{n} s_{k-n}=0$ for $k>n$.
(3) Let n be a positive integer and denote by $\omega=e^{2 \pi i / n}$.
(a) Show that a complex number z with $z^{n}=1$ and for any $k, 1 \leq k<n, z^{k} \neq 1$ is of the form ω^{r} where $\operatorname{gcd}(r, n)=$ 1. These are called primitive roots of unity and there are precisely $\phi(n)$ of them, where ϕ is the Euler function.
(b) Show that $\mathbb{Q}(\omega)$ is the splitting field of $X^{n}-1 \in \mathbb{Q}[X]$.
(c) Show that the Galois group $G(\mathbb{Q}(\omega) / \mathbb{Q})$ is isomorphic to the group of units in the ring $\mathbb{Z} / n \mathbb{Z}$.
(4) If K is a field of characteristic zero and contains ω (as in the previous problem), show that the Galois group of the polynomial $X^{n}-a, a \in K$ is abelian.
(5) Let K be the splitting field over Q of $X^{4}-2 x^{2}-1$. Calculate $G(K / \mathbb{Q})$ and find all fields F such that $\mathbb{Q} \subset F \subset K$.

