HOMEWORK 2, DUE WED FEB 10TH

All solutions should be with proofs, you may quote from the book

- (1) In the following problem, we are given a set and a suggested binary operation. Check whether it is indeed a binary operation and then check whether the set is a group with respect to this operation.
 - (a) Let \mathbb{R}/\mathbb{Z} denote the set of equivalence classes of \mathbb{R} with the relation $a \sim b$ if $a b \in \mathbb{Z}$ (which you checked is indeed an equivalence relation in the first homework). Define an operation by [a] + [b] = [a + b]
 - (b) Let *U* be the set of 2×2 matrices of the form $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ for all $\theta \in \mathbb{R}$, with the operation being the usual matrix multiplication.
 - (c) Let *G*, *H* be two groups and let the set be $G \times H$ and the binary operation is defined as (g,h)(g',h') = (gg',hh').
- (2) Let *G* be a group such that for any $a, b \in G$, $(ab)^2 = a^2b^2$. Show that *G* is abelian.
- (3) Let *G* be a group and let $\{H_{\alpha}\}$ be a collection (possibly infinite) of subgroups of *G*.
 - (a) Show that $\cap_{\alpha} H_{\alpha}$ is a subgroup of *G*.
 - (b) Now, let the above collection be the set of *all* subgroups of *G* different from the trivial subgroup $\{e\}$. If $\bigcap_{\alpha} H_{\alpha} \neq \{e\}$, show that every element of *G* has finite order.
- (4) Let *G* be a group and *H* a subgroup.
 - (a) Show that for any $a \in G$, $aHa^{-1} = \{aha^{-1} | h \in H\}$ is a subgroup of *G* (called a *conjugate* of *H*).

(b) Let
$$N = \bigcap_{a \in G} aHa^{-1}$$
. Show that for any $x \in G$, $xNx^{-1} = N$.

- (5) Let *G* be a group, *H* a subgroup of *G* of finite index.
 (a) Show that the set {*a*H*a*⁻¹|*a* ∈ *G*} is finite.
 - (b) Show that there is a subgroup $N \subset H$ of finite index such that $aNa^{-1} = N$ for all $a \in G$.
- (6) Let *G* be an abelian group.
 - (a) If $a, b \in G$ with o(a) = m, o(b) = n. Show that *G* has an element *c* with o(c) = lcm(m, n), the lowest common multiple of *m*, *n*.
 - (b) Assume *G* is finite. If the number of solutions in *G* to the equation $x^n = e$ is at most *n* for any positive integer *n*, show that *G* must be cyclic.