HOMEWORK 4, DUE THU FEB 25TH

All solutions should be with proofs, you may quote from the book or from previous home works

- (1) Let *G* be a finite abelian group.
 - (a) Let H, K be subgroups of G with gcd(o(H), o(K)) = 1. Show that the natural map $f: H \times K \to G$, f(a, b) = ab is a one-to-one group homomorphism.
 - (b) Show that G is isomorphic to $H_1 \times H_2 \times \cdots \times H_n$ with all H_i cyclic and $o(H_{i+1})$ dividing $o(H_i)$.
- (2) We write \mathbb{F}_p for $\mathbb{Z}/p\mathbb{Z}$ for a prime p, since we wish to use the fact that it has addition, multiplication and inverses for all non-zero elements, called a *field*.
 - (a) Let $G = GL(n, \mathbb{F}_p)$. Then, we can let G act on $\mathbb{F}_p^n = \mathbb{F}_p \times \mathbb{F}_p \times \cdots \times \mathbb{F}_p$ (n times) as usual (recall from Math 429 how this works). If A is any $n \times n$ matrix with entries from \mathbb{F}_p and $\underline{a} \in \mathbb{F}_p^n$ (written as column vectors) then $A\underline{a} \in \mathbb{F}_p^n$ makes sense. Show that such an A is in G if and only if the columns (or rows) are linearly independent. That is, if $A = [\underline{a}_1, \underline{a}_2, \cdots, \underline{a}_n]$ and $c_1\underline{a}_1 + c_2\underline{a}_2 + \cdots + c_n\underline{a}_n = \underline{0}$, with $c_i \in \mathbb{F}_p$, then $c_i = 0$ for all i.
 - (b) Calculate the order of *G* for a prime *p*.
- (3) These are some problems on automorphisms.
 - (a) Let G be a finite group and $\phi \in \operatorname{Aut}(G)$. Assume that if $\phi(g) = g$ for $g \in G$ then g = e. Show that every element in $g \in G$ is of the form $g = x^{-1}\phi(x)$ for some $x \in G$. Deduce that, if in addition $\phi^2 = \operatorname{Id}$, then G is abelian.
 - (b) Show that a finite group with order greater than two has a non-trivial (not equal to identity) automorphism.

- (c) Let $\phi(n)$ be the Euler function (the number of integers k, $1 \le k < n$ with $\gcd(k,n) = 1$). For any integer a > 1, show that n divides $\phi(a^n 1)$. (Hint: For any m > 1, $\phi(m)$ is the order of $\operatorname{Aut}(\mathbb{Z}/m\mathbb{Z})$.)
- (4) These are some problems on semi-direct products.
 - (a) Construct a non-abelian group of order 55 and one of order 203.
 - (b) Can you do the same for 35?
- (5) Show that $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z})$ is a cyclic group for any prime p.