## HOMEWORK 4, DUE THU FEB 25TH

All solutions should be with proofs, you may quote from the book or from previous home works
(1) Let $G$ be a finite abelian group.
(a) Let $H, K$ be subgroups of $G$ with $\operatorname{gcd}(o(H), o(K))=1$. Show that the natural map $f: H \times K \rightarrow G, f(a, b)=a b$ is a one-to-one group homomorphism.
(b) Show that $G$ is isomorphic to $H_{1} \times H_{2} \times \cdots \times H_{n}$ with all $H_{i}$ cyclic and $o\left(H_{i+1}\right)$ dividing $o\left(H_{i}\right)$.
(2) We write $\mathbb{F}_{p}$ for $\mathbb{Z} / p \mathbb{Z}$ for a prime $p$, since we wish to use the fact that it has addition, multiplication and inverses for all non-zero elements, called a field.
(a) Let $G=G L\left(n, \mathbb{F}_{p}\right)$. Then, we can let $G$ act on $\mathbb{F}_{p}^{n}=$ $\mathbb{F}_{p} \times \mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p}$ ( $n$ times) as usual (recall from Math 429 how this works). If $A$ is any $n \times n$ matrix with entries from $\mathbb{F}_{p}$ and $\underline{a} \in \mathbb{F}_{p}^{n}$ (written as column vectors) then $A \underline{a} \in \mathbb{F}_{p}^{n}$ makes sense. Show that such an $A$ is in $G$ if and only if the columns (or rows) are linearly independent. That is, if $A=\left[\underline{a}_{1}, \underline{a}_{2}, \cdots, \underline{a}_{n}\right]$ and $c_{1} \underline{a}_{1}+c_{2} \underline{a}_{2}+$ $\cdots+c_{n} \underline{a}_{n}=\underline{0}$, with $c_{i} \in \mathbb{F}_{p}$, then $c_{i}=0$ for all $i$.
(b) Calculate the order of $G$ for a prime $p$.
(3) These are some problems on automorphisms.
(a) Let $G$ be a finite group and $\phi \in \operatorname{Aut}(G)$. Assume that if $\phi(g)=g$ for $g \in G$ then $g=e$. Show that every element in $g \in G$ is of the form $g=x^{-1} \phi(x)$ for some $x \in G$. Deduce that, if in addition $\phi^{2}=\mathrm{Id}$, then $G$ is abelian.
(b) Show that a finite group with order greater than two has a non-trivial (not equal to identity) automorphism.
(c) Let $\phi(n)$ be the Euler function (the number of integers $k$, $1 \leq k<n$ with $\operatorname{gcd}(k, n)=1)$. For any integer $a>1$, show that $n$ divides $\phi\left(a^{n}-1\right)$. (Hint: For any $m>1$, $\phi(m)$ is the order of $\operatorname{Aut}(\mathbb{Z} / m \mathbb{Z})$.)
(4) These are some problems on semi-direct products.
(a) Construct a non-abelian group of order 55 and one of order 203.
(b) Can you do the same for 35 ?
(5) Show that $\operatorname{Aut}(\mathbb{Z} / p \mathbb{Z})$ is a cyclic group for any prime $p$.

