HOMEWORK 5, DUE THU MAR 4TH

All solutions should be with proofs, you may quote from the book or from previous home works
(1) Let G be a finite group and let p be the smallest prime dividing the order of G. Let H be a subgroup of G of index p. Show that H is normal.
(2) Let G be a group of order 231. Show that the 11-Sylow subgroup is in the center of G.
(3) Let G be a group of order $p^{2} q, p, q$ primes. Show that either a p-Sylow subgroup or q-Sylow subgroup is normal.
(4) Let G be a group of order $p q, p<q$ primes.
(a) If p does not divide $q-1$, show that G is cyclic.
(b) If p divides $q-1$, show that there is a unique non-abelian group G up to isomorphism.
(5) Let \mathbb{F}_{p} as usual denote the field of p elements (i. e. $\mathbb{Z} / p \mathbb{Z}$ for a prime p, where we have addition and multiplication as usual).
(a) Calculate the order of $G L\left(n, \mathbb{F}_{p}\right)$.
(b) Find a p-Sylow subgroup (more or less explicitly describe).
(6) Let G be a finite group in which $(a b)^{p}=a^{p} b^{p}$ for every $a, b \in$ G where p divides $o(G)$.
(a) Prove that the p-Sylow subgroup of G is normal.
(b) If P is the p-Sylow subgroup, then there exists a normal subgroup N such that $P \cap N=\{e\}$ and $P N=G$.

