HOMEWORK 6, DUE THU MAR 11TH

All solutions should be with proofs, you may quote from the book or from previous home works
(1) Let G be a finite abelian group of order n and let

$$
G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}
$$

Let $g=\prod_{i=1}^{n} g_{i}$.
(a) Show that $g^{2}=e$.
(b) If $o(G)$ is either odd or G has more than one element of order two, show that $g=e$.
(c) If G has exactly one element of order 2 , say x, show that $g=x$.
(2) Let p be a prime number.
(a) Show that for any $x \in \mathbb{Z}, x^{p} \equiv x \bmod p$. (Fermat's little theorem)
(b) Show that $(p-1)!\equiv-1 \bmod p$. (Wilson's theorem)
(c) Assume p is odd. Write

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1}=\frac{a}{b}
$$

with $a, b \in \mathbb{Z}$. Show that $p \mid a$.
(3) Find all automorphisms of S_{3}.
(4) This is a long problem, but most cases are easy. Show that any group of order at most 30 is either of prime order or has a non-trivial normal subgroup, by analyzing each order. (In fact you should be able to do this for groups of order less than 60. We have seen A_{5}, whose order is 60 , is simple.)
(5) Let $G=S L\left(2, \mathbb{F}_{p}\right)$, and Z be the center of $S L\left(2, \mathbb{F}_{p}\right)$. Let $P=P G L\left(2, \mathbb{F}_{p}\right)=S L\left(2, \mathbb{F}_{p}\right) / Z$, the projective linear group. Calculate $o(G)$ and $o(P)$.
(6) Let notation be as in the previous problem and assume that $p=5$. Further assume that in this case, we know P is simple. We will as usual denote elements of \mathbb{F}_{p} as $\{0,1,2,3,4\}$.
(a) Let

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right], B=\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right]
$$

Show that $\operatorname{det} A=\operatorname{det} B=1$ and then we identify these with their images in P.
(b) Show that A, B generate a 2-Sylow subgroup H of P and $E H E^{-1} \neq H$, where ,

$$
E=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

So H is not normal.
(c) Let $C=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$. Show that $\operatorname{det} C=1$ and $o(C)=3$. Show that $C \in N(H)$, the normalizer of H. Deduce that $o(N(H))=12$.
(d) Prove that $P \cong A_{5}$.

