HOMEWORK 7, DUE THU MAR 25TH

All solutions should be with proofs, you may quote from the book or from previous home works
(1) Let R, S be rings.
(a) Show that $A=R \times S$ is a ring with co-ordinate wise addition and multiplication. That is, $(a, b)+(c, d)=(a+$ $c, b+d)$ and $(a, b)(c, d)=(a c, b d)$. Show that the map $R \rightarrow R \times S$, given by $a \mapsto(a, 0)$ is a ring homomorphism. (Similarly for $S \rightarrow R \times S$. The construction can be done more generally, for a collection of rings. If R_{i} for $i \in I$, an indexing set, is a collection of rings, we can take ΠR_{i} and give it as above a ring structure.)
(b) If R is a commutative ring with identity and $e \in R$ is an idempotent (that means $e^{2}=e$), show that $1-e$ is also an idempotent. Show that, $R e, R(1-e)$ are subrings of R and $R=R e \times R(1-e)$ as rings.
(c) Find all non-trivial idempotents (since 0,1 are always idempotents, we want to find others if any) in the rings $\mathbb{Z} / 25 \mathbb{Z}, \mathbb{Z} / 15 \mathbb{Z}$.
(2) Let k be a field and V a vector space (possibly infinite dimensional) over k.
(a) Show that $E=\{f: V \rightarrow V \mid f, k$ - linear $\}$ is a ring with addition and multiplication defined as follows. $(f+g)(v)=$ $f(v)+g(v)$ and $f g(v)=f(g(v))$. (If V is finite dimensional, you must recognize this as ring of square matrices, once we choose a basis).
(b) Take $V=k[X]$, polynomial ring in one variable. Show that we can identify X as an element of V, multiplication on V by X. Similarly $D=\frac{d}{d X}$, the derivative is an element of E. Show that $D X-X D=1$, where 1 stands for the identity function.
(3) Let R be any commutative ring with identity. A map $D: R \rightarrow$ R is called a derivation if $D(a+b)=D(a)+D(b)$ and $D(a b)=$ $a D(b)+b D(a)$. (This is called the Leibniz' rule or product rule in Calculus, if you remember).
(a) Show that $D(1)=0$.
(b) Let $A=\{a \in R \mid D(a)=0\}$ (often called the kernel of D). Show that A is a subring of R.
(c) Assume that Q, the field of rational numbers, is a subring of R. Then, show that $D(q)=0$ for all $q \in \mathbb{Q}$.
(d) Assume further, that for any element $a \in R$ there is an n, positive integer such that $D^{n}(a)=0\left(D^{n}\right.$ as usual is the short form for composition of D with itself n times) and that there is an $x \in R$ with $D(x)=1$. Show that $R=A[x]$. That is, any element in R is just a polynomial in x with coefficients from A.
(4) Consider $R=M_{2}(\mathbb{R})$, the $n \times n$ matrices. We have seen that it is a (non-commutative) ring with the usual matrix addition and multiplication. So, we can multiply a matrix $A \in R$ with a vector $\mathbf{v} \in \mathbb{R}^{2}=V$ as usual. (The results below are true for any $M_{n}(K)$, where K is any field and n is any positive integer, but the ideas can already be seen in the case $n=2$.)
(a) Let $\mathbf{0} \neq \mathbf{v} \in V$ and let $I=\{A \in R \mid A \mathbf{v}=\mathbf{0}\}$. Show that I is a left ideal of R.
(b) Show that I is maximal. That is if $I \subset J \subset R$, where J is another left ideal, then $I=J$ or $J=R$.
(c) Show that R has no non-trivial two sided ideals.
(5) These are a few problems on homomorphisms.
(a) Let $A \in M_{n}(K)=R, K$ any field and consider the map $\phi: K[X] \rightarrow R$, given by, $\phi(P(X))=P(A)$ (this means, if $P(X)=a_{0}+a_{1} X+\cdots+a_{r} X^{r}, P(A)=a_{0} I+a_{1} A+\cdots+$ $\left.a_{r} A^{r}\right)$. Show that this is a ring homomorphism. What is its kernel? (I am just asking for a word you might have learned in linear algebra).
(b) We define new binary operations on R as above. The addition is the same, but a new multiplication is given by $A \star B=B A$. Show that $(R,+, \star)$ is a ring which we call $R^{o p}$. Show that the map $R \rightarrow R^{o p}$ given by $A \mapsto A^{T}$ is a ring homomorphism.

