HOMEWORK 9, DUE THU APR 8TH

All solutions should be with proofs, you may quote from the book or from previous home works

- (1) Let *p* be a prime number.
 (a) Show that the polynomial *xⁿ* − *p* is irreducible in Q[*x*].
 - (b) Show that $f(x) = \frac{x^p 1}{x 1} = 1 + x + \dots + x^{p-1}$ is irreducible over the rationals. (Hint: Put x = y + 1 and use Eisenstein.)
 - (c) Write $x^6 1$ as a product of irreducible polynomials in $\mathbb{Q}[x]$.
- (2) Let A = Z[√-5].
 (a) Show that the only units in A are ±1.
 - (b) Show that $3, 2 + \sqrt{-5}$ and $2 \sqrt{-5}$ are irreducible in *A*.
 - (c) Prove that *A* is not a PID, using $3^2 = (2 + \sqrt{-5})(2 \sqrt{-5})$.
- (3) Let $A = \mathbb{C}[x, y]/I$ where *I* is the principal ideal generated by $y^2 x^3 x$. We also have an inclusion $B = \mathbb{C}[x] \subset A$ as a subring.
 - (a) Show that $y^2 x^3 x$ is irreducible in $\mathbb{C}[x, y]$ and so, *A* is an integral domain.
 - (b) Show that all maximal ideals of *B* are of the form (x a)B for some $a \in \mathbb{C}$. (Hint: Fundamental Theorem of Algebra).
 - (c) Show that if $M \subset A$ is a maximal ideal of A, then $M \cap B$ is a maximal ideal of B.
- (4) Let A be a PID.

HOMEWORK 9, DUE THU APR 8TH

- (a) Let $R = K_1 \times K_2 \times \cdots \times K_n$, where K_i s are fields, with the usual product ring structure. Let $a_1, \ldots, a_m \in R$ such that the ideal generated by these is the whole ring R. Show that we can find $q_2, q_3, \ldots, q_m \in R$ such that $a_1 + q_2a_2 + q_3a_3 + \cdots + q_ma_m$ is a unit in R.
- (b) Let $a_1, \ldots, a_m \in A$ be such that $gcd(a_1, \ldots, a_m) = 1$. Also assume that $m \ge 3$. Then show that we can find

$$p_2,\ldots,p_m,q_3,\ldots,q_m\in A$$

such that,

 $gcd(a_1 + p_2a_2 + \dots + p_ma_m, a_2 + q_3a_3 + \dots + q_ma_m) = 1.$

(c) Let $a_1, \ldots, a_m \in A$ with $gcd(a_1, \ldots, a_m) = 1$. Show that we can find an invertible matrix *U* of size *m* so that,

$$(a_1,\ldots,a_m)U = (1,0,\ldots,0).$$

(Do this for $m \leq 3$, which has all the necessary ideas for full credit.)

(d) Using the above and imitating the proof we did in class, show that any torsion free finitely generated module over *A* is free.