HOMEWORK 9, DUE THU APR 8TH

All solutions should be with proofs, you may quote from the book or from previous home works
(1) Let p be a prime number.
(a) Show that the polynomial $x^{n}-p$ is irreducible in $\mathbb{Q}[x]$.
(b) Show that $f(x)=\frac{x^{p}-1}{x-1}=1+x+\cdots+x^{p-1}$ is irreducible over the rationals. (Hint: Put $x=y+1$ and use Eisenstein.)
(c) Write $x^{6}-1$ as a product of irreducible polynomials in $\mathrm{Q}[x]$.
(2) Let $A=\mathbb{Z}[\sqrt{-5}]$.
(a) Show that the only units in A are ± 1.
(b) Show that $3,2+\sqrt{-5}$ and $2-\sqrt{-5}$ are irreducible in A.
(c) Prove that A is not a PID, using $3^{2}=(2+\sqrt{-5})(2-$ $\sqrt{-5})$.
(3) Let $A=\mathbb{C}[x, y] / I$ where I is the principal ideal generated by $y^{2}-x^{3}-x$. We also have an inclusion $B=\mathbb{C}[x] \subset A$ as a subring.
(a) Show that $y^{2}-x^{3}-x$ is irreducible in $\mathbb{C}[x, y]$ and so, A is an integral domain.
(b) Show that all maximal ideals of B are of the form $(x-$ a) B for some $a \in \mathbb{C}$. (Hint: Fundamental Theorem of Algebra).
(c) Show that if $M \subset A$ is a maximal ideal of A, then $M \cap B$ is a maximal ideal of B.
(4) Let A be a PID.
(a) Let $R=K_{1} \times K_{2} \times \cdots \times K_{n}$, where $K_{i} \mathrm{~s}$ are fields, with the usual product ring structure. Let $a_{1}, \ldots, a_{m} \in R$ such that the ideal generated by these is the whole ring R. Show that we can find $q_{2}, q_{3}, \ldots, q_{m} \in R$ such that $a_{1}+q_{2} a_{2}+$ $q_{3} a_{3}+\cdots+q_{m} a_{m}$ is a unit in R.
(b) Let $a_{1}, \ldots, a_{m} \in A$ be such that $\operatorname{gcd}\left(a_{1}, \ldots, a_{m}\right)=1$. Also assume that $m \geq 3$. Then show that we can find

$$
p_{2}, \ldots, p_{m}, q_{3}, \ldots, q_{m} \in A
$$

such that,
$\operatorname{gcd}\left(a_{1}+p_{2} a_{2}+\cdots+p_{m} a_{m}, a_{2}+q_{3} a_{3}+\cdots+q_{m} a_{m}\right)=1$.
(c) Let $a_{1}, \ldots, a_{m} \in A$ with $\operatorname{gcd}\left(a_{1}, \ldots, a_{m}\right)=1$. Show that we can find an invertible matrix U of size m so that,

$$
\left(a_{1}, \ldots, a_{m}\right) U=(1,0, \ldots, 0)
$$

(Do this for $m \leq 3$, which has all the necessary ideas for full credit.)
(d) Using the above and imitating the proof we did in class, show that any torsion free finitely generated module over A is free.

