lecture 17: The Fundamental Theorems

Main Point of today's lecture:

- taking the "slope" function $\left(f(x)\right.$ uni $\left.f^{\prime}(x)\right)$ and
- taking the "area-up-to-x" function ($f(x)$ mus $\left.\int_{c}^{x} f(t) d t\right)$ are inverse operations.

Let I be an open interval.
Definition: $P: I \rightarrow \mathbb{R}$ is a primitive (or antidecivativa) of $f: I \rightarrow \mathbb{R}$ if $P^{\prime}=f$ an I.
FTC I ("Indefinite integral l yield primitres")
Assume: f integrable on $[a, x] \forall x \in[a, b]$, and $c \in[a, b]$. (e.g. f is boundeltpicecewise monotonic on $[a, b]$, or f is picceusise continuous on $[a, b]$)
Set $A(x):=\int_{c}^{x} f(t) d t, \delta_{f}:=\{x \in(a, b) \mid f$ is continues at $x\}$.
Then: $A^{\prime}(x)$ exists and equal, $f(x)$ at every $x \in \delta_{f}$.
 v. 1 ("Every primitive is an $\begin{gathered}\text { indefinite interact") v. } 2 \text { ("Deftrite einfescil } \text { change in primitive") }\end{gathered}$

$$
P(x)=P(c)+\int_{c}^{x} f(t) d t \xlongequal[\substack{j u s t=\text { sbbscthen } \\ x=b, c=a}]{\text { indcemite intesqual }} \int_{a}^{b} f(x) d x=P(b)-P(a)=\left.P(x)\right|_{a} ^{b} \text {. }
$$

You've probably all had enough of using FTC II to compuen integrals, but here is are we weren't able to do from the definition of the integral: fractional powers.

Ex 1/ We showed $\frac{d}{d x} x^{q+1}=(q+1) x^{q}$ for any $q \in Q$. So $\frac{x^{q+1}}{q+1}$ is a primitive for x^{q} so long as $q \neq-1$, and (for $0 \leq a \leq b$)

$$
\int_{a}^{b} x^{q} d x=\frac{b^{q+1}-a^{q+1}}{q+1} \text { by FTC II. }
$$

Ex2/If $q=-1$, define (for $x>0$) $\log (x):=\int_{1}^{x} \frac{1}{t} d t$. By FTC I, $\quad \frac{d}{d x} \log (x)=\frac{1}{x}$.
Ex 3/The FTCs elucidate the relationship g between the MUTs. Suppose we only knew the one tor derivatives, and let f be continuous on $[a, b]$. Then f is inter roble there and

$$
\int_{c}^{x} f(t) d t=: F(x) \text { is }\left\{\begin{array}{l}
\text { continuous in }[a, b] \text { (by Lection } 12) \\
\text { differmiticble an }(a, b) \text {, with } F^{\prime}=f(\text { by } F T C I) .
\end{array}\right.
$$

So F satisfors the hypotuses of the MUT for derivatives, and $\exists c \in(a, b)$ s.f. $F^{\prime}(c)=\frac{1}{b-a}(F(b)-F(a))$. $\quad \sin a F^{\prime}=f$ \& $F(b)-F(a)=\int_{a}^{b} f(x) d x$ (FTCII), this rails $f(c)=\frac{1}{b-a} \int_{a}^{b} f(t) d t$.

If g is also continues on $[a, b]$, with primitive G, and $f y$ hes promizhe H, then applying the Cache MuT to HQG gives $\frac{H^{\prime}(c)}{G^{\prime}(c)}=\frac{H(b)-H(a)}{G(b)-G(a)}$ Lena $f(c)=\frac{\int_{a}^{b} f(x) g(x) d x}{\int_{a}^{b} g(x) d x}$, which is the weighted MUT for integrals!

Ex 4/p(t) $=$ (vertical) position of ball
$v(t)=p^{\prime}(t)=$ velocity
$a(t)=v^{\prime}(t)=p^{\prime \prime}(t) \stackrel{y}{=}$ acceleration.
If $a=a_{0}$ is constant, then $v(t)=a_{0} t+v_{0} \quad\left(v_{0}=v(0)\right)$, and the change in position is $p(T)-p(0)=\int_{0}^{T}\left(a_{0} t+v_{0}\right) d t=a_{0} \frac{T^{2}}{2}+v_{0} T$. For instance, if the ball starts from rest $\left(v_{0}=0\right)$, and $a_{0}=-9$, then $p(T)-p(0)=-\frac{9}{2} T^{2}$.
But if we factor in air-resistince, instead of $p^{\prime \prime}=-g$ we hove to "intyrate" p " $=-g-k p$ ", which is a full-fleenged differniza equation. (Cunt some thurs get!)
Proofs. The key point is that the rote of accumulation of area under the graph of a function is proportional to its height.

Set

$$
A(x):=\int_{c}^{x} f(t) d t
$$

Hecristrically

$$
\frac{\Delta A}{\Delta x} \approx \frac{f(x) \cdot \Delta x}{\Delta x}=f(x)
$$

A(1) we med to do is to make this a bit mare precise.

Proof of FTC I: We must show that $A^{\prime}(x)$ exists $A=f(x)$ provienel f is continuous at x.

$$
\text { Compute } A^{\prime}(x)=\lim _{h \rightarrow 0} \frac{A(x+h)-A(x)}{h}=\lim _{h \rightarrow 0} \frac{\int_{c}^{x+h} f(x) d x-\int_{c}^{x} f(x) d x}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d e
$$

To show this limit exists, let $\epsilon>0$: by continuiz) of f or $x, \exists \delta>0$ sit.

$$
t \in(x-\delta, x+\delta) \Rightarrow f(x)-\frac{\epsilon}{2}<f(t)<f(x)+\frac{\epsilon}{2} \text {. }
$$

Tolling $0<h<\delta,[x, x+h] \subset(x-\delta, x+\delta)$ and so (x) holds on the interval of integration. By the comparison property,

$$
\begin{aligned}
& \frac{1}{h} \int_{x}^{+h} \frac{\left(f(x)-\frac{\epsilon}{2}\right) d t \leq \frac{1}{h} \int_{x}^{\text {constant }} \text { int }}{x+h} f(t) d t \leq \frac{1}{h} \int_{x}^{x+h} \underbrace{\left(f(x)+\frac{\epsilon}{2}\right)}_{\substack{\text { constant } \\
\text { in } t}} d t \\
& \quad \| \\
& f(x)-\frac{\epsilon}{2}
\end{aligned}
$$

hence $\left|\frac{1}{h} \int_{x}^{x+h} f(t) d t-f(x)\right| \leq \frac{\epsilon}{2}<\epsilon$. This give
$\lim _{h \rightarrow 0^{+}} \frac{1}{h} \int_{x}^{x+h} f(t) d t=f(x)$, and a simitar analysis (reversing inequalities) gives the $\lim _{h \rightarrow 0^{-}}$.
Proof of FTC II: Define $A(x):=\int_{c}^{x} f(t) d t$. By FTC I \& continuity of $f, A^{\prime}(x)=f(x)$. So P, A ane bop n primpiries

$$
\begin{aligned}
& \Rightarrow(P-A)^{\prime}=P^{\prime}-A^{\prime}=f-f=0 \Rightarrow P-A=k \text { (canstect) } \\
& \underset{\substack{\text { ether } \\
\text { at } x=0}}{\Rightarrow} k=P(c)-A(c)=P(c) \Rightarrow P(x)=P(c)+A(x) .
\end{aligned}
$$

