MATH 233 (SPRING 2016) FINAL EXAM REVIEW SUGGESTIONS

This two-hour exam will consist of 25 multiple-choice questions, 10 of which are on the new material (sections 16.2-6). (Don't panic: the questions are mostly easier than on previous exams, so while more numerous should go by more quickly.) Make sure to bring a number 2 pencil. Calculators and 3×5-cards will not be permitted. Exam scores will be available the following day.

Below is a list of topics from Chapter 16. For the earlier material, refer to previous exam study guides, with the following caveats: you do not need to know the point-plane distance formula, or how to parametrize the osculating circle.
16.1 Idea of a vector field $\vec{F}(x, y, z)$ (or $\vec{F}(x, y)$), flow lines (parametric curves solving $\vec{r}(t)=\vec{F}(\vec{r}(t)))$.
Definition: \vec{F} is conservative if $\vec{F}=\vec{\nabla} f$ for some function f
16.2 How to compute line integrals with respect to arclength $(d s), d x$, and $d y$. (Replace these, respectively, by $\left\|\vec{r}^{\prime}(t)\right\| d t, x^{\prime}(t) d t$, and $y^{\prime}(t) d t$.)
If $\vec{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$, then $\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} P d x+Q d y=\int_{a}^{b}\left\{P(x(t), y(t)) x^{\prime}(t)+\right.$ $\left.Q(x(t), y(t)) y^{\prime}(t)\right\} d t$.
16.3 $\quad \int_{C} \vec{F} \cdot d \vec{r}$ independent of path $\Longleftrightarrow \oint_{C} \vec{F} \cdot d \vec{r}=0$ (for all loops) $\Longleftrightarrow \vec{F}$ conservative.
On a simply connected region, \vec{F} conservative $\Longleftrightarrow \operatorname{curl} \vec{F}=\overrightarrow{0}$, i.e. $P_{y}=Q_{x}$ (and $P_{z}=R_{x}, Q_{z}=R_{y}$ if in 3-D).
In this case, be able to find f such that $\vec{F}=\vec{\nabla} f$, and use to compute $\int_{C} \vec{F} \cdot d \vec{r}=$ $f(B)-f(A)$.
16.4 Green's theorem (in plane) $\oint_{\partial D} P d x+Q d y=\iint_{D}\left(Q_{x}-P_{y}\right) d x d y$. Application to computing area: $A(D)=\iint_{D} d x d y=\oint_{C} x d y=\frac{1}{2} \oint(-y d x+x d y)$.
$\operatorname{curl}(\vec{F})=\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle, \operatorname{div}(\vec{F})=P_{x}+Q_{y}+R_{z}, \nabla^{2} f=f_{x x}+f_{y y}+f_{z z}$ On \mathbb{R}^{3}, \vec{F} is the curl of another field $\Longleftrightarrow \operatorname{div}(\vec{F})=0$.
Gauss's theorem (in plane): $\oint_{\partial D} \vec{F} \cdot \hat{n} d s=\iint_{D} \operatorname{div}(\vec{F}) d A$.
16.6 Surface area of a parametric surface S parametrized by $\vec{r}(u, v)$ (where (u,v) range over $D \subset \mathbb{R}^{2}$): given by $\iint_{D}\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$, or in case of graph $z=f(x, y)$ by $\iint_{D} \sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d x d y$.

