MATH 233 PRACTICE FINAL EXAM

PART I: MULTIPLE CHOICE PROBLEMS

- (1) Find the volume of the parallelepiped with edges (3, 2, 1), (1, 1, 2) and (1, 3, 3).
 - (A) -11
 - (B) -7
 - (C) -3
 - (D) 1
 - (E) 5
 - (F) 9
- (2) Consider the curve traced out by $\vec{r}(t) = \langle 8\cos t, 6t, 8\sin t \rangle$ for $-5 \le t \le 5$. Find the total arclength. (A) 10
 - (B) 20
 - (C) 50
 - (D) 60
 - (E) 100
 - (F) 200

(3) For $\vec{r}(t)$ as in (2), compute the radius of the osculating circle (at any point).

- (A) $\frac{25}{2}$ (B) 8

- (D) $\frac{5}{4}$ (D) $\frac{4}{5}$ (E) $\frac{1}{8}$ (F) $\frac{2}{25}$
- (4) On a distant planet, gravity is $2m/s^2$. Determine the speed (in m/s) at which a projectile must be thrown at an angle of 30° above the horizontal, from a 10 m high tower, to hit an object on the ground $90\sqrt{3}m$ from the base of the tower.
 - (A) 1
 - (B) 3
 - (C) 9
 - (D) 18
 - (E) 27
 - (F) 81
- (5) Solid gold is pouring out of a slot machine into a conical pile, in such a way that at a certain instant, the height h is 9in and increasing at 3in/min, and the radius r is 4in and increasing at 2in/min. How fast (in in^3/min) is the volume increasing at that instant? [Hint: $V = \frac{\pi}{3}r^2h$ for a cone.]
 - (A) 16π
 - (B) 32π
 - (C) 48π
 - (D) 64π
 - (E) 80π
 - (F) 96π

- (A) 0
- $\begin{array}{c} (B) & \frac{\pi}{6} \\ (C) & \frac{\pi}{5} \\ (D) & \frac{\pi}{4} \\ (E) & \frac{\pi}{3} \\ (F) & \frac{\pi}{2} \end{array}$

- (7) Compute the directional derivative of $f(x, y, z) = xy + z^2$ at (1, 1, 1) in the direction toward (5, -3, 3)from there.
 - (A) 0

 - (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) 1

 - $(E) \frac{4}{3}$ (F) 2
- (8) If $T(x, y, z) = 2x^2 + y^2 + z^2$ is the temperature function (in C) on the disk $x^2 + (y-2)^2 + z^2 \le 9$, what are the hottest and coldest temperatures on the disk?
 - (A) 24; 0
 - (B) 25; 0
 - (C) 26; 0
 - (D) 24; 1
 - (E) 25; 1
 - (F) 26; 1
- (9) Find $\iint_{\mathcal{D}} \frac{2}{1+x^2} dA$, where \mathcal{D} is the triangular region with vertices at (0,0), (1,1) and (0,1).
 - (A) $\frac{\pi}{2}$
 - (B) π
 - $(C) \ln 2$
 - (D) $2 \ln 2$
 - (E) $\frac{\pi}{2} 2 \ln 2$ (F) $\frac{\pi}{2} \ln 2$
- (10) Consider the disk of radius 1 with center (0,1) and mass density function $\rho(x,y) = \sqrt{x^2 + y^2}$. Compute the total mass.

 - $\begin{array}{c} \text{(A)} \ \frac{32}{9} \\ \text{(B)} \ \frac{16}{3} \\ \text{(C)} \ \frac{8}{3} \\ \text{(D)} \ \frac{4\pi}{3} \end{array}$
 - (E) π
 - $(F) \frac{2\pi}{3}$

- $\begin{array}{c} \text{(A)} \ \frac{5v^2}{u^8} \\ \text{(B)} \ \frac{v^2}{u^8} \\ \text{(C)} \ \frac{5x^6}{y^4} \\ \text{(D)} \ \frac{x^6}{y^4} \\ \text{(E)} \ \frac{5u^8}{v^2} \\ \text{(F)} \ \frac{u^8}{v^2} \end{array}$

- (12) Let $\vec{F} = (2x+y)\hat{i} + (x-2y)\hat{j}$. Compute $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$, where \mathcal{C} is any oriented curve starting at A = (1,2)and ending at B = (3, 0).
 - (A) 10
 - (B) 5
 - (C) 0
 - (D) 5
 - (E) 10
 - (F) the integral is not independent of path

Part II: Free-Response problems.

- (1) Find the work done by the force field $\vec{F}(x, y, z) = y\hat{i} + z\hat{j} + x\hat{k}$ in moving a particle along the oriented curve \mathcal{C} traced out by $\vec{r}(t) = \langle t, t^2, t^3 \rangle, t \in [0, 1].$
- (2) Are the integrals $\oint_{\mathcal{C}} \vec{F} \cdot d\vec{r}$ of $\vec{F}(x, y, z) = (2xyz + z^2)\hat{i} + (x^2z + z^3)\hat{j} + (x^2y + 3yz^2)\hat{k}$ around any closed path equal to zero? Why or why not?
- (3) Use Gauss's theorem in the plane to compute the flux of $\vec{F}(x,y) = (e^{-y^2} + 2x)\hat{i} + (e^{-2x^2} + y)\hat{j}$ across the (counterclockwise oriented) boundary of the triangle with vertices (0,0), (1,0), and (0,1).
- (4) Determine a formula for the surface area of the "polar cap" on a sphere of radius a determined by the spherical angle α . (For full credit you must compute the integral; of course, the final expression should involve a and α .)

