(1) Find the volume of the parallelepiped with edges $\langle 3,2,1\rangle,\langle 1,1,2\rangle$ and $\langle 1,3,3\rangle$.
(A) -11
(B) -7
(C) -3
(D) 1
(E) 5
(F) 9
(2) Consider the curve traced out by $\vec{r}(t)=\langle 8 \cos t, 6 t, 8 \sin t\rangle$ for $-5 \leq t \leq 5$. Find the total arclength.
(A) 10
(B) 20
(C) 50
(D) 60
(E) 100
(F) 200
(3) For $\vec{r}(t)$ as in (2), compute the radius of the osculating circle (at any point).
(A) $\frac{25}{2}$
(B) 8
(C) $\frac{5}{4}$
(D) $\frac{4}{5}$
(E) $\frac{1}{8}$
(F) $\frac{2}{25}$
(4) On a distant planet, gravity is $2 \mathrm{~m} / \mathrm{s}^{2}$. Determine the speed (in m / s) at which a projectile must be thrown at an angle of 30° above the horizontal, from a 10 m high tower, to hit an object on the ground $90 \sqrt{3} \mathrm{~m}$ from the base of the tower.
(A) 1
(B) 3
(C) 9
(D) 18
(E) 27
(F) 81
(5) Solid gold is pouring out of a slot machine into a conical pile, in such a way that at a certain instant, the height h is 9 in and increasing at $3 \mathrm{in} / \mathrm{min}$, and the radius r is 4 in and increasing at $2 \mathrm{in} / \mathrm{min}$. How fast (in $i n^{3} / \min$) is the volume increasing at that instant? [Hint: $V=\frac{\pi}{3} r^{2} h$ for a cone.]
(A) 16π
(B) 32π
(C) 48π
(D) 64π
(E) 80π
(F) 96π
(6) Set $f(x, y)=\frac{2}{9} y^{\frac{3}{2}}+\frac{1}{6} x y$. Find the angle between the $x y$-plane and the tangent plane to $z=f(x, y)$ at $(0,2, f(0,2))$.
(A) 0
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{5}$
(D) $\frac{\pi}{4}$
(E) $\frac{\pi}{3}$
(F) $\frac{\pi}{2}$
(7) Compute the directional derivative of $f(x, y, z)=x y+z^{2}$ at $(1,1,1)$ in the direction toward $(5,-3,3)$ from there.
(A) 0
(B) $\frac{1}{3}$
(C) $\frac{2}{3}$
(D) 1
(E) $\frac{4}{3}$
(F) 2
(8) If $T(x, y, z)=2 x^{2}+y^{2}+z^{2}$ is the temperature function (in ${ }^{\circ} C$) on the disk $x^{2}+(y-2)^{2}+z^{2} \leq 9$, what are the hottest and coldest temperatures on the disk?
(A) $24 ; 0$
(B) $25 ; 0$
(C) $26 ; 0$
(D) $24 ; 1$
(E) $25 ; 1$
(F) $26 ; 1$
(9) Find $\iint_{\mathcal{D}} \frac{2}{1+x^{2}} d A$, where \mathcal{D} is the triangular region with vertices at $(0,0),(1,1)$ and $(0,1)$.
(A) $\frac{\pi}{2}$
(B) π
(C) $\ln 2$
(D) $2 \ln 2$
(E) $\frac{\pi}{2}-2 \ln 2$
(F) $\frac{\pi}{2}-\ln 2$
(10) Consider the disk of radius 1 with center $(0,1)$ and mass density function $\rho(x, y)=\sqrt{x^{2}+y^{2}}$. Compute the total mass.
(A) $\frac{32}{9}$
(B) $\frac{16}{3}$
(C) $\frac{8}{3}$
(D) $\frac{4 \pi}{3}$
(E) π
(F) $\frac{2 \pi}{3}$
(11) Say we are integrating in x and y and we want to integrate in $u=\frac{x^{2}}{y}$ and $v=\frac{x^{5}}{y^{2}}$. We must replace $d x d y$ by what function times $d u d v$?
(A) $\frac{5 v^{2}}{u^{8}}$
(B) $\frac{v^{2}}{u^{8}}$
(C) $\frac{5 x^{6}}{y^{4}}$
(D) $\frac{x^{6}}{y^{4}}$
(E) $\frac{5 u^{8}}{v^{2}}$
(F) $\frac{u^{8}}{v^{2}}$
(12) Let $\vec{F}=(2 x+y) \hat{i}+(x-2 y) \hat{j}$. Compute $\int_{\mathcal{C}} \vec{F} \cdot d \vec{r}$, where \mathcal{C} is any oriented curve starting at $A=(1,2)$ and ending at $B=(3,0)$.
(A) -10
(B) -5
(C) 0
(D) 5
(E) 10
(F) the integral is not independent of path

Part II: Free-Response problems.

(1) Find the work done by the force field $\vec{F}(x, y, z)=y \hat{i}+z \hat{j}+x \hat{k}$ in moving a particle along the oriented curve \mathcal{C} traced out by $\vec{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle, t \in[0,1]$.
(2) Are the integrals $\oint_{\mathcal{C}} \vec{F} \cdot d \vec{r}$ of $\vec{F}(x, y, z)=\left(2 x y z+z^{2}\right) \hat{i}+\left(x^{2} z+z^{3}\right) \hat{j}+\left(x^{2} y+3 y z^{2}\right) \hat{k}$ around any closed path equal to zero? Why or why not?
(3) Use Gauss's theorem in the plane to compute the flux of $\vec{F}(x, y)=\left(e^{-y^{2}}+2 x\right) \hat{i}+\left(e^{-2 x^{2}}+y\right) \hat{j}$ across the (counterclockwise oriented) boundary of the triangle with vertices $(0,0),(1,0)$, and $(0,1)$.
(4) Determine a formula for the surface area of the "polar cap" on a sphere of radius a determined by the spherical angle α. (For full credit you must compute the integral; of course, the final expression should involve a and α.)

